Reading and Writing OpenEXR Image Files with the
limImf Library

Last Update: 02/03/05

This document shows how to write C++ code that reads and writes OpenEXR image files. The text
assumes that the reader is familiar with OpenEXR terms like "channel”, "attribute”, or "data window". For
an explanation of those terms see the Technical Introduction to OpenEXR document. The OpenEXR
source distribution contains a subdirectory, IImimfExamples, with most of the code examples below. A
Makefile is also provided, so that the examples can easily be compiled and run.

Table of Contents

1 Scan-line-based and Tiled OPENEXR fIlES.......ccoiiiireeree e s 2
2 Using the RGBA-only Interface for Scan-line-based Files...........cccveveivce e 3
2.1 Writing an RGBA 1Mage FilE........ouciieiiieiie ettt 3
2.2 Writing @ Cropped IMAQE......ccueevieeiireee it steses e et tesastesaesessesee e sseseeseste e esesaenesseseesesaenesssseenensens 4
2.3 SOrNG CUSIOM ALIFIOULES.......c.ceeetirece bbb 5
2.4 Reading an RGBA IMaQgE FilE.....c.oiiiieie et ettt st nenne e 5
2.5 Reading an RGBA Image Filein ChUNKS...........oiiiiiecrrecere s 6
2.6 Reading CUStOM ALIIIDULES.........ouoiieec e 7
2.7 Luminance/Chroma and Gray-SCale IMAJES..........ceorieirrieirerieiiereeieiseeses e 8
3 Using the General Interface for Scan-line-based FIles.........oooiinnneine e 9
B L WIHItING @8N 1MAQE FlE...... ettt et s b e e sae e 9
3.2 WIiting @ CropPed IMBGE........courveeeirieienirieieiereeee sttt sttt st st 10
3.3 REAAING 8N IMBGE FI....c.eieeiee e bbb st 10
3.4 Interleaving Image Channelsin the Frame BUFfer ... 12
3.5 Which ChannelSar€in @FilE2..........coo i e 13
ATiles, LevalSand LEVE MOES.......ccco ittt sttt st et sae e s bbb ne st e see e e 14
5 Using the RGBA-only Interface for TIled FIlES........ccciieiiiicc st 15
5.1 Writing a Tiled RGBA Image File with One Resolution Level............cccoeeieneincneine e 15
5.2 Writing a Tiled RGBA Image File with Mipmap LEVEIS.........cccoveveoeieiceeecee e 16
5.3 Writing a Tiled RGBA Image File with Ripmap Levels.........cocooeiinninneneneec e 17
54 Reading aTiled RGBA IMage File........cooeiiiieeseses et 18
6 Using the General Interface for Tiled FIlES.........oo e e e 20
6.1 Writing @ Tiled IMAGE FilE.....ccoeeeeeee et e en e 20
6.2 Reading aTiled IMage File.......cooe et e e st re e s 20
T MISCEIIBNEOUS......ccueueeeeieire ettt es e te e e besee e seeseesesee e eseseenessensese s e enne e e esesaaneeseseeneseenenns 22
7.115thisan OPENEXR FE?......coiiiee et ne s ne s 22
7.2 CUSIOM LOW-LEVEl FlE 1/O.....oieieeei ettt sttt s e nne e 22
G (= YT A 1 7= o R 24
7.4 ENVIFONMENT MBS,eetiitiitiiet ittt sttt sttt e b et s b bt s et b e et b e e bt st bbb 26
B I 41==T0 B0 = 28

1 Scan-line-based and Tiled OpenEXR files

In an OpenEXR file, pixel data can be stored either as scan lines or as tiles. Files that store pixels as tiles
can also store multiresolution images. For each of the two storage formats (scan line or tile-based), the
IImImf library supports two reading and writing interfaces: the first, fully general, interface alows access
to arbitrary channels, and supports many different in-memory pixel data layouts. The second interface is
easier to use, but limits access to 16-bit (HALF) RGBA (red, green, blue, alpha) channels, and provides
fewer options for laying out pixelsin memory.

The interfaces for reading and writing OpenEXR files are implemented in the following eight C++ classes:

tiles scan lines scan lines and tiles
arbitrary channgls Til edInputFile InputFile
TiledQutputFile QutputFile
RGBA only Ti | edRgbal nput Fi | e Rgbal nput Fi |l e

Ti | edRgbaQut putFil e RgbaQut putFi l e

The classes for reading scan-line-based images (I nput Fi | e and Rgbal nput Fi |) can also be used to
read tiled image files. This way, programs that do not need support for tiled or multiresolution images can
always use the rather straightforward scan-line interfaces, without worrying about complications related to
tiling and multiple resolutions. When a multiresolution file is read via a scan-line interface, only the
highest-resolution version of the image is accessible.

2 Using the RGBA-only Interface for Scan-line-based Files

2.1 Writing an RGBA Image File
Writing asimple RGBA image file isfairly straightforward:

void

writeRgbal (const char fileNanme[],
const Rgba *pi xel s,
int wdth,
i nt height)

RgbaCutputFile file (fileName, wi dth, height, WR TE_RGBA);
file.setFrameBuffer (pixels, 1, width);
file.witePixels (height);

~——
~——
wWN -

}

Construction of an RgbaOutputFile object, in line 1, creates an OpenEXR header, sets the header's
attributes, opens the file with the specified name, and stores the header in the file. The header's display
window and data window are both setto (0, 0) - (wi dth-1, height-1). The channel list contains
four channels, R, G, B, and A, of type HALF.

Line 2 specifies how the pixel data arelaid out in memory. In our example, the pi xel s pointer is assumed
to point to the beginning of an array of wi dt h* hei ght pixels. The pixels are represented as Rgba structs,
which are defined like this:

struct Rgba
hal f r; Il red
hal f g; /1 green
hal f b; /1 blue
hal f a; /1 al pha (opacity)

}s

The elements of our array are arranged so that the pixels of each scan line are contiguous in memory.
The set FraneBuf fer () function takes three arguments, base, xSt ri de, and ystri de. To find the
address of pixel (x,y), the RghbaQut put Fi | e object computes

base + x * xStride + y * yStride.

In this case, base, xStri de and yStri de are set to pi xel s, 1, and wi dt h, respectively, indicating that
pixel (x, y) can befound at memory address

pixels + 1 * x + width * y.

Thecal towitePixel s(), inline3, copiesthe image's pixels from memory to the file. The argument to
wri t ePi xel s(), hei ght, specifies how many scan lines worth of data are copied.

Finaly, returning from function writ eRgbal() destroys the local RgbaQut put Fi |l e object, thereby
closing thefile.

Why do we have to tell the wri t ePi xel s() function how many scan lines we want to write? Shouldn't
the RgbaCut put Fi | e object be able to derive the number of scan lines from the data window? The lImImf
library doesn't require writing al scan lines with a single wri t ePi xel s() call. Many programs want to
write scan lines individually, or in small blocks. For example, rendering computer-generated images can
take a significant amount of time, and many rendering programs want to store each scan line in the image
file as soon as all of the pixels for that scan line are available. This way, users can look at a partial image
before rendering is finished. The IImimf library allows writing the scan lines in top-to-bottom or bottom-
to-top direction. The direction is defined by the file header's line order attribute (I NCREASI NG Y or
DECREASI NG _Y). By default, scan lines are written top to bottom (I NCREASI NG _Y).

You may have noticed that in the example above, there are no explicit checks to verify that writing the file
actually succeeded. If the IImImf library detects an error, it throws a C++ exception instead of returning a
C-style error code. With exceptions, error handling tends to be easier to get right than with error return

values. For instance, a program that calls our writ eRgbal() function can handle al possible error
conditions with a single try/catch block:
try
writeRgbal (fileNane, pixels, width, height);
catch (const std::exception &exc)

std::cerr << exc.what() << std::endl;

}

2.2 Writing a Cropped Image

Now we are going to store a cropped image in afile. For this example, we assume that we have a frame
buffer that is large enough to hold an image with wi dt h by hei ght pixels, but only part of the frame
buffer contains valid data. In the file's header, the size of the whole image is indicated by the display
window, (0, 0) - (width-1, height-1), and the data window specifies the region for which valid
pixel data exist. Only the pixelsin the data window are stored in the file.

voi d

writeRgba2 (const char fileNanme[],

const Rgba *pi xel s,

int wdth,
i nt height,
const Box2i &datawW ndow)
{
Box2i di spl ayW ndow (V2i (0, 0), V2i (width - 1, height - 1));
RghaCut putFile file (fileNanme, displayWndow, dataW ndow, WRI TE_RGBA);
file.setFrameBuffer (pixels, 1, width);
file.witePixels (dataWndow. max.y - dataWndow. mn.y + 1);
}

The code above is similar to that in section 2.1, where the whole image was stored in the file. Two things
are different, however: When the RgbaQut put Fi | e object is created, the data window and the display
window are explicitly specified rather than being derived from the image's width and height. The number
of scan lines stored in the file by wri t ePi xel s() isequal to the height of the data window instead of the
height of the whole image. Since we are using the default | NCREASI NG _Y direction for storing the scan
lines in the file, witePixels() sarts at the top of the data window, a y coordinate
dat aw ndow. mi n. y, and proceeds toward the bottom, at y coordinate dat aw ndow. max. y.

Even though we are storing only part of the image in the file, the frame buffer is till large enough to hold
the whole image. In order to save memory, a smaller frame buffer could have been allocated, just big
enough to hold the contents of the data window. Assuming that the pixels were still stored in contiguous
scan lines, with the pi xel s pointer pointing to the pixel at the upper left corner of the data window, at
coordinates (dat aw ndow. mi n. x, dat aW ndow. mi n.y), the arguments to the set Fr aneBuf f er ()
call would have to be to be changed as follows:

int dwwdth = datawW ndow. max. x - dataW ndow. m n.x + 1;

file.setFrameBuffer
(pixels - dataWndow. min.x - dataWndow. min.y * dwNdth, 1, dwwWdth);

With these settings, evaluation of
base + x * xStride + y * yStride

for pixel (dat aw ndow. mi n. x, dat awW ndow. i n.y) produces

pixels - dataWindow.min.x - dataWindow.min.y * dwWidth
+ dataWindow.min.x * 1
+ dataWindow.min.y * dwWidth

= pixels -
- dataWindow.min.x
- dataWindow.min.y * (dataWindow.max.x - dataWindow.min.x + 1)
+ dataWindow.min.x
Yy

+ dataWindow.min. * (dataWindow.max.x — dataWindow.min.x + 1)

= pixels,

which is exactly what we want. Similarly, calculating the addresses for pixels (dat aw ndow. mi n. x+1,
dat aW ndow. mi n.y) and (dataW ndow. min.x, dataW ndow. min.y+1) Yyields pixel s+1 and
pi xel s+dww dt h, respectively.

2.3 Storing Custom Attributes

We will now to store an image in a file, and we will add two extra attributes to the image file header: a
string, called "comments', and a4x4 matrix, called "cameraTransform".

void
writeRgba3 (const char fileNane[],
const Rgba *pi xel s,
int wdth,
i nt height,
const char conments[],
const M4f &cameraTransform

{
Header header (width, height);
header.insert ("comments", StringAttribute (comrents));
header.insert ("caneraTransforni, Mi4fAttribute (caneraTransforn));
RgbaQutputFile file (fileName, header, WRI TE_RGBA);
file.setFrameBuffer (pixels, 1, width);
file.witePixels (height);

}

The set FrameBuffer() and writePixel s() cals are the same as in the previous examples, but
construction of the RgbaCut put Fi | e object is different. The constructors in the previous examples
automatically created a header on the fly, and immediately stored it in the file. Here we explicitly create a
header and add our own attributes to it. When we create the RgbaCut put Fi | e object, we tell the
constructor to use our header instead of creating its own.

In order to make it easier to exchange data between programs written by different people, the IImimf
library defines a set of standard attributes for commonly used data, such as colorimetric information, time
and place where an image was recorded, or the owner of an image file's content. For the current list of
standard attributes, see the header file | nf St andar dAttri but es. h. The list is expected to grow over
time as OpenEXR users identify new types of datathey would like to represent in a standard format. If you
need to store some piece of information in an OpenEXR file header, it is probably a good ideato check if a
suitable standard attribute exists, before you define anew attribute.

2.4 Reading an RGBA Image File
Reading an RGBA image is almost as easy as writing one:

voi d

readRgbal (const char fileNange[],
Array2D<Rgba> &pi xel s,
int &wi dth,
i nt &hei ght)

Rgbal nputFile file (fileNane);
Box2i dw = file.dataW ndow();

wi dt h
hei ght

dw. max. x - dw. m
dw. max.y - dw. m

pi xel s. resi zeErase (height, wdth);

file.setFrameBuffer (&pixels[0][0] - dwmin.x - dwmn.y * width, 1, width);
file.readPixels (dw. mn.y, dw nmax.y);

}

Constructing an Rgbal nput Fi | e object, passing the name of the file to the constructor, opens the file and
reads the file's header.

After asking the Rgbal nput Fi | e object for the file's data window, we alocate a buffer for the pixels. For
convenience, we use the IImimf library's Ar r ay2D class template (the call to r esi zeEr ase() does the
actual allocation). The number of scan lines in the buffer is equa to the height of the data window, and the
number of pixels per scan lineis equal to the width of the datawindow. The pixels are represented as Rgba
structs.

Note that we ignore the display window in this example; in a program that wanted to place the pixelsin the
data window correctly in an overall image, the display window would have to be taken into account.

Just as for writing a file, calling set Fr ameBuf f er () tells the Rgbal nput Fi | e object how to access
individual pixelsin the buffer (see also section 2.2, Writing a Cropped Image, on page 4).

Calling r eadPi xel s() copies the pixel data from the file into the buffer. If one or more of the R, G, B,
and A channdls are missing in the file, the corresponding field in the pixds is filled with an appropriate
default value. The default value for R, G and B is 0.0, or black; the default value for A is 1.0, or opaque.

Finally, returning from function r eadRgbal() destroystheloca Rgbal nput Fi | e object, thereby closing
thefile.

Unlike the RgbaQut put Fi |l e's wri t ePi xel s() method, readPi xel s() has two arguments. Calling
readPi xel s(y1, y2) copiesthe pixelsfor al scan lines with y coordinates from y1 to y2 into the frame
buffer. This allows access to the the scan lines in any order. The image can be read al at once, one scan
line at atime, or in small blocks of afew scan lines. It isalso possible to skip parts of the image.

Note that even though random access is possible, reading the scan lines in the same order as they were
written, is more efficient. Random access to the file requires seek operations, which tend to be dow.
Calling the RgbalnputFile's| i neOr der () method returns the order in which the scan linesin the file were
written (I NCREASI NG_Y or DECREASI NG Y). If successive callstor eadPi xel s() accessthe scan linesin
theright order, the IImimf library reads the file as fast as possible, without seek operations.

2.5 Reading an RGBA Image File in Chunks

The following shows how to read an RGBA image in blocks of a few scan lines. This is useful for
programs that want to process high-resolution images without allocating enough memory to hold the
complete image. These programs typically read a few scan lines worth of pixels into a memory buffer,
process the pixels, and store them in another file. The buffer is then re-used for the next set of scan lines.
Image operations like color-correction or compositing ("A over B") are very easy to do incrementally this
way. With clever buffering of afew extra scan lines, incremental versions of operations that require access
to neighboring pixels, like blurring or sharpening, are also possible.

voi d

EeangbaZ (const char fileName[])

Rgbal nputFile file (fil eNane);
Box2i dw = file.dataW ndow();

int width = dwmax.x - dwmn.x + 1;
int height = dw.max.y - dw.mn.y + 1;
Array2D<Rgba> pi xel s (10, width);
while (dw. min.y <= dw max.y)

file.setFrameBuffer (&pixels[0][0] - dwmin.x - dwnmin.y * wdth,
1, width);

file.readPixels (dw.min.y, min (dwnminy + 9, dw nmax.y));

6

/'l processPi xel s (pixels)
dw. min.y += 10;

}

Again, we open the file and read the file header by constructing an Rgbal nput Fi | e object. Then we
allocate amemory buffer that is just large enough to hold ten complete scan lines. We call r eadPi xel s()
to copy the pixels from the file into our buffer, ten scan lines at a time. Since we want to re-use the buffer
for every block of ten scan lines, we have to call set Fr anebuf f er () before each r eadPi xel s() cdl, in
order to associate memory address &pi xel s[0] [0] first with pixel coordinates
(dw. min.x, dw mn.y), then with (dw. mi n. x, dw. min.y+10), (dw. m n.x, dw. nmin.y+20) and
S0 on.

2.6 Reading Custom Attributes

In section 2.3, we showed how to store custom attributes in the image file header. Here we show how to
test whether a given file's header contains particular attributes, and how to read those attributes' values.

voi d
readHeader (const char fileNanme[])

Rgbal nputFile file (fileNane);

const StringAttribute *coments =
file.header().findTypedAttribute <StringAttribute> ("coments");

const Mi4fAttribute *canmeraTransform =
file.header().findTypedAttribute <M44f Attri bute> ("caneraTransform');

if (coments)
cout << "comments\n " << comments->val ue() << endl;

i f (caneraTransform
cout << "caneraTransformn" << caneraTransform >val ue() << flush;

}

As usual, we open the file by constructing an RgbalnputFile object. Calling fi ndTypedAttri but e<T>
(n) searches the header for an attribute with type T and name n. If a matching attribute is found,
findTypedAttri bute() returns a pointer to the attribute. If the header contains no attribute with name
n, or if the header contains an attribute with name n, but the attribute's typeisnot T, fi ndAt t ri but e()
returns 0. Once we have pointers to the attributes we were looking for, we can access their values by
calling the attributes' val ue() methods.

In this example, we handle the possibility that the attributes we want may not exist by explicitly checking
for 0 pointers. Sometimes it is more convenient to rely on exceptions instead. Function t ypedAttri bute
(), avariation of fi ndTypedAttri bute(), also searches the header for an attribute with a given name
and type, but if the attribute in question does not exist, t ypedAttri but e() throws an exception rather
than returning 0.

Note that the pointers returned by findTypedAttribute() point to data that are part of the
Rgbal nput Fi | e object. The pointers become invalid as soon as the Rgbal nput Fi | e object is destroyed.
Therefore, the following will not work:

void

readComments (const char fileName[], StringAttribute *&comments)

{
// error: comments pointer is invalid after this function returns
RgbalnputFile file (fileName);
comments = file.header () .findTypedAttribute <StringAttribute> ("comments");

readComent s() must copy the attribute's value before it returns; for example, like this:

void
readComments (const char fileName[], string &comments)

{

RgbalInputFile file (fileName);
comments = file.header () .typedAttribute<StringAttribute> ("comments") .value();

}

2.7 Luminance/Chroma and Gray-Scale Images

Writing an RGBA image file usudly preserves the pixels without losing any data; saving an image file and
reading it back does not alter the pixels R, G, B and A values. Most of the time, lossless data storage is
exactly what we want, but sometimes file space or transmission bandwidth are limited, and we would like
to reduce the size of our image files. It is often acceptable if the numbers in the pixels change slightly as
long as theimage still looks just like the original.

The RGBA interface in the ImImf library supports storing RGB data in luminance/chroma format. The R,
G, and B channels are converted into a luminance channel, Y, and two chroma channels, RY and BY. The
Y channel represents a pixel's brightness, and the two chroma channels represent its color. The human
visual system's spatial resolution for color is much lower than the spatial resolution for brightness. This
allows us to reduce the horizontal and vertical resolution of the RY and BY channels by a factor of two.
The visual appearance of the image doesn't change, but the image occupies only haf as much space, even
before data compression is applied. (For every four pixels, we store four Y vaues, one RY vaue, and one
BY value, instead of four R, four G, and four B values.)

When opening afile for writing, a program can select how it wants the pixelsto be stored. The constructors
;ﬁreleass RgbaQut put Fi | e have anr gbaChannel s argument, which determines the set of channelsin the

VRl TE_RGB red, green, blue

VRI TE_RGBA red, green, blue, apha

V\RI TE_YC [uminance, chroma

VRI TE_YCA [uminance, chroma, apha

VRI TE_Y luminance only

VIRI TE_YA luminance, apha

VRI TE_Y and WRI TE_YA provide an efficient way to store gray-scale images. The chroma channels for a
gray-scale image contain only zeroes, so they can be omitted from thefile.

When an image file is opened for reading, class Rgbal nput Fi | e automatically detects luminance/chroma
images and converts the pixels back to RGB format.

3 Using the General Interface for Scan-line-based Files

3.1 Writing an Image File

This example demonstrates how to write an OpenEXR image file with two channels: one channel, of type
HALF, is called G, and the other, of type FLOAT, is called Z. The size of the image is wi dt h by hei ght
pixels. The data for the two channels are supplied in two separate buffers, gPi xel s and zPi xel s. Within
each buffer, the pixels of each scan line are contiguous in memory.

voi d

witeGZl (const char fileNane[],

const half *gPi xel s,
const float *zPixels,

int width,
i nt height)
{
Header header (w dth, height); /11
header . channel s().insert ("G', Channel (HALF)); /112
header . channel s().insert ("Z", Channel (FLQOAT)); /1 3
QutputFile file (fileNane, header); /Il 4
FraneBuf fer franeBuffer; /15
frameBuffer.insert ("G', /1 name /Il 6
Slice (HALF, /Il type [7
(char *) gPixels, /1l base /1 8
si zeof (*gPixels) * 1, [/ xStride// 9
sizeof (*gPixels) * width)); // yStride// 10
frameBuffer.insert ("Z", /1 nane /1 11
Slice (FLOAT, Il type /1 12
(char *) zPixels, /'l base /1 13
sizeof (*zPixels) * 1, /1 xStridel/l 14
sizeof (*zPixels) * width)); // yStride// 15
file.setFrameBuffer (frameBuffer); /1 16
file.witePixels (height); /117
}

Inline 1, an OpenEXR header is created, and the header's display window and data window are both set to
(0, 0) - (width-1, height-1).

Lines 2 and 3 specify the names and types of the image channels that will be stored in the file.

Constructing an Qut put Fi | e object in line 4 opens the file with the specified name, and stores the header
inthefile.

Lines 5 through 16 tell the Qut put Fi | e object how the pixel data for the image channels are laid out in
memory. After constructing aFr ameBuf f er object, aSl i ce isadded for each of the image file's channels.
A Sli ce describes the memory layout of one channel. The constructor for the Sl i ce object takes four
arguments, t ype, base, xStride, and yStri de. t ype specifies the pixel data type (HALF, FLOAT, or
Ul NT); the other three arguments define the memory address of pixel (x, y) as

base + x * xStride + y * yStride.
Note that base is of type char *, and that offsets from base are not implicitly multiplied by the size of an

individual pixel, asin the RGBA-only interface. xSt ri de and ySt ri de must explictly take the size of the
pixels into account.

With the values specified in our example, the IImimf library computes the address of the G channel of
pixel (x,y) likethis:

(half*) ((char*)gPixels + x * sizeof (half) * 1 + y * sizeof (half) * width)
= (half*) ((char*)gPixels + x * 2 + y * 2 * width),

The address of the Z channd of pixel (x, y) is

(float*) ((char*)zPixels + x * sizeof(float) * 1 + y * sizeof(float) * width)
= (float*) ((char*)zPixels + x * 4 + y * 4 * width).

ThewritePi xel s() cal inline9 copiesthe image's pixels from memory into the file. Asin the RGBA-
only interface, the argument towr i t ePi xel s() specifies how many scan lines are copied into the file (see
section 2.1, Writing an RGBA Image File, on page 3).

If the image file contains a channel for which the Fr ameBuf f er object has no corresponding Sl i ce, then
the pixels for that channel in the file are filled with zeroes. If the Fr aneBuf f er object containsa Sli ce
for which the file has no channel, then the Sl i ce isignored.

Returning from function wr i t eGZ1() destroysthe local Qut put Fi | e object and closes thefile.

3.2 Writing a Cropped Image

Writing a cropped image using the general interface is analogous to writing a cropped image using the
RGBA-only interface, as shown in section 2.2, on page 4: In the file's header the data window is set
explicitly instead of being generated automatically from the image's width and height. The number of scan
lines that are stored in the file is equal to the height of the data window, instead of the height of the entire
image. As in section 2.2, the example code below assumes that the memory buffers for the pixels are large
enough to hold wi dt h by hei ght pixels, but only the region that corresponds to the data window will be
stored in the file. For smaller memory buffers with room only for the pixels in the data window, the base,
xStride and yStride arguments for the FrameBuf f er object's slices would have to be adjusted
accordingly (again, see section 2.2).

voi d

wite&2 (const char fileNane[],

const hal f *gPi xel s,
const float *zPixels,

int wdth,
i nt height,
const Box2i &dataW ndow)
{
Header header (w dth, height);
header . dat aW ndow() = dat aW ndow;
header . channel s().insert ("G', Channel (HALF));
header. channel s().insert ("Z", Channel (FLOAT));
QutputFile file (fileNane, header);
FraneBuf fer franeBuffer;
frameBuf fer.insert ("G', /1 name
Slice (HALF, Il type
(char *) gPixels, /] base
si zeof (*gPixels) * 1, /1 xStride
sizeof (*gPixels) * width)); // yStride
frameBuffer.insert ("Z", /'l nane
Slice (FLOAT, /] type
(char *) zPixels, /] base
sizeof (*zPixels) * 1, /1 xStride
sizeof (*zPixels) * width)); // yStride
file.setFrameBuffer (frameBuffer);
file.witePixels (dataWndow. max.y - dataWndow. min.y + 1);
}

3.3 Reading an Image File

In this example, we read an OpenEXR image file using the IImImf library's general interface. We assume
that the file contains two channels, R, and G, of type HALF, and one channel, Z, of type FLOAT. If one of

10

those channels is not present in the image file, the corresponding memory buffer for the pixels will be

filled with an appropriate default value.

voi d

readGZl (const char fileNane[],
Array2D<hal f > &r Pi xel s,
Array2D<hal f > &gPi xel s,
Array2D<fl| oat > &zPi xel s,
int & dth, int &height)

{

InputFile file (fil eName);
Box2i dw = file. header (). datawW ndow();
width = dw max.x - dw.mn.x + 1;
height = dw.nmax.y - dwnmin.y + 1;
rPi xel s. resi zeErase (height, wdth);
gPi xel s. resi zeErase (height, w dth);
zPi xel s. resi zeErase (height, w dth);
FrameBuffer franmeBuffer;
frameBuffer.insert ("R',

Slice (HALF,

(char *) (& Pixels[0][0] -
dw. mn.x -
dw.min.y * wdth),

si zeof (rPixels[0][0]) * 1,

sizeof (rPixels[0][0]) * width,

1, 1,

0.0));

frameBuffer.insert ("G
Slice (HALF,

(char *) (&gPixels[0][0] -
dw. mn.x -
dw. min.y * wdth),

sizeof (gPixels[0][0]) * 1,

si zeof (gPixels[0][0]) * wi dth,

0.0));

frameBuffer.insert ("2",
Slice (FLOAT,

(char *) (&zPixels[0][0] -
dw. mn.x -
dw.mn.y * wdth),

sizeof (zPixels[O][0]) * 1,

si zeof (zPixels[0][0]) * w dth,

1, 1,

FLT_MAX)) ;

file.setFrameBuffer (frameBuffer);
file.readPixels (dw mn.y, dw nmaex.y);
}

~——
~——

~———
~———

—~—— —~—— — ~——
—~—— — ~——

~——

~———

name

type
base

xStride
yStride

x/'y sanpling
fill Val ue

nanme

type
base

xStride
yStride

x/'y sanpling
fillVval ue

nanme

type
base

xStride
yStride

x/'y sanpling
fillVval ue

First, we open the file with the specified name, by constructing an | nput Fi | e object.

Using the Ar r ay 2D class template, we allocate memory buffers for the image's R, G and Z channels. The

buffers are big enough to hold all pixelsin the file's data window.

Next, we create a Fr ameBuf f er object, which describes our buffers to the Ilmimf library. For each image

channel, we add a slice to the Fr ameBuf f er .

As usual, the dlice'st ype, xStri de, and ySt ri de describe the corresponding buffer's layout. For the R
channdl, pixel (dw. min.x, dw min.y) isat address & Pi xel s[0] [0] . By setting the t ype, xStri de

and ySt ri de of the corresponding Sl i ce object as shown above, evaluating

base + x * xStride +y * yStride

for pixel (dw. mi n. x, dw. min.y) produces

11

(char*) (&rPixels[0][0] - dw.min.x - dw.min.y * width)
+ dw.min.x * sizeof (rPixels[0][0]) * 1
+ dw.min.y * sizeof (rPixels[0][0]) * width

(char*) &rPixels[0] [0]
- dw.min.x * sizeof (rPixels[0][0]

)
- dw.min.y * sizeof (rPixels[0][0]) * width
+ dw.min.x * sizeof (rPixels[0][0])
+ dw.min.y * sizeof (rPixels[0][0]) * width

= &rPixels[0][0].

The address calculations for pixels (dw. min.x+1, dw. nin.y) and (dw mn.x, dw mn. y+1)
produce &r Pi xel s[0] [0] +1 and &r Pi xel s[0] [O] +wi dt h, which is equivalent to &r Pi xel s[0] [1]
and &r Pi xel s[1][0].

Each Sl i ce hasafil | val ue. If theimage file does not contain an image channel for the Sl i ce, then the
corresponding memory buffer will be filled with thefi | | Val ue.

The Sl i ce' s remaining two parameters, xSanpl i ng and ySanpl i ng are used for images where some of
the channels are subsampled, for instance, the RY and BY channels in luminance/chroma images. (see
section 2.7, Luminance/Chroma and Gray-scale Images, on page 8). Unless an image contains subsampled
channels, xSanpling and ySanpling should aways be set to 1. For detaills see header files
I nf Fr aneBuf f er. h and | nf Channel Li st . h.

After describing our memory buffers' layout, we call r eadPi xel s() to copy the pixel data from the file
into the buffers. Just as with the RGBA-only interface, r eadPi xel s() alows random-access to the scan
linesin thefile (see section 2.5 Reading an RGBA Image File, on page 6).

3.4 Interleaving Image Channels in the Frame Buffer

Hereisavariation of the previous example. We are reading an image file, but instead of storing each image
channel in a separate memory buffer, we interleave the channelsin a single buffer. The buffer isan array of
structs, which are defined like this:

typedef struct GZ
{
half g;
float z;
}i

The code to read the file is aimost the same as before; aside from reading only two instead of three
channels, the only difference is how base, xStri de and yStri de for the Sl i ces in the Fr aneBuf f er
object are computed:

voi d

readGZ2 (const char fileNane[],

Array2D<GZ> &pi xel s,
int &width, int &height)

InputFile file (fil eName);

Box2i dw = file. header().dataW ndow);
width = dw nmax.x - dw.mn.x + 1;

hei ght = dw. max.y - dw.nmn.y + 1;

int dx = dw mn.x;

int dy = dw. mn.y;

pi xel s. resi zeErase (height, width);
FrameBuffer franmeBuffer;

frameBuffer.insert ("G',
Slice (HALF,
(char *) &pixel s[-
si zeof (pixel s[0]
si zeof (pixels[O0]

12

frameBuf fer.insert ("Z",
Slice (FLOAT,

(char *) &pixels[-dy][-dx].z,
sizeof (pixels[0][0]) * 1,
si zeof (pixels[0][0]) * width));

file.setFrameBuffer (frameBuffer);
file.readPixels (dw. mn.y, dw nmaex.y);

}

3.5 Which Channels are in a File?

In functionsr eadGzZ1() and r eadGz2(), above, we simply assumed that the files we were trying to read
contained a certain set of channels. We relied on the [Imimf library to do "something reasonable” in case
our assumption was not true. Sometimes we want to know exactly what channels are in an image file
before reading any pixels, so that we can do what we think is appropriate.

The file's header contains the file's channel list. Using iterators similar to those in the C++ Standard
Template Library, we can iterate over the channels:

const ChannellList &channels = file.header () .channels();
for (Channellist::ConstIterator i = channels.begin(); i != channels.end(); ++i)
{

const Channel &channel = i->second;

/] ...

}

Channels can also be accessed by name, either withthe[] operator, or with the fi ndChannel () function:

const ChannellList &channels = file.header () .channels();
const Channel &channel = channelList["G"];
const Channel *channelPtr = channellList.findChannel ("G");

The difference between the [] operator and fi ndChannel () function is how errors are handled: If the
channel in question is not present, f i ndChannel () returns0; the[] operator throws an exception.

13

4 Tiles, Levels and Level Modes

A single tiled OpenEXR file can hold multiple versions of an image, each with a different resolution. Each
version is called a level. A tiled file's level mode defines how many levels are stored in the file. There are
three different level modes:

ONE_LEVEL The file contains only a single, full-resolution level. A ONE_LEVEL image file
is equivalent to a scan-line-based file; the only difference is that the pixels are
accessed by tile instead of by scan line.

M PMAP_LEVELS The file contains multiple levels. The first level holds the image at full
resolution. Each successive level is haf the resolution of the previous level in x
and y direction. The last level contains only a single pixel. M PMAP_LEVELS
files are used for texture-mapping and similar applications.

RIPMAP_LEVELS Like M PMAP_LEVELS, but with more levels. The levels include all
combinations of reducing the resolution of the image by powers of two
independently in x and y direction. Used for texture mapping, like
M PMAP_LEVELS. The additional levelsin a Rl PMAP_LEVELS file can help to
accelerate anisotropic filtering during texture lookups.

In M PMAP_LEVELS and RI PMAP_LEVELS mode, the size (width or height) of each level is computed by
halving the size of the level with the next higher resolution. If the size of the higher-resolution level isodd,
then the size of the lower-resolution level must be rounded up or down in order to avoid arriving at a non-
integer width or height. The rounding direction is determined by thefile's level size rounding mode.

Within each level, the pixels of the image are stored in a two-dimensiona array of tiles. The tiles in an
OpenEXR file can be any rectangular shape, but all tiles in a file have the same size. This means that
lower-resolution levels contain fewer, rather than smaller, tiles.

An OpenEXR fil€'s level mode and rounding mode, and the size of the tiles are stored in an attribute in the
file header. The value of this attributeisaTi | eDescri pti on object:

enum Level Mode

ONE_LEVEL,
M PMAP_LEVELS,
Rl PMAP_LEVELS
}s

enum Level Roundi nghode

{
ROUND_DOWN,

ROUND_UP
}s

class TileDescription

public:
unsi gned i nt xSi ze; I/l size of atile in the x dinension
unsi gned i nt ySi ze; // size of atile in the y dinension
Level Mbde node;

Level Roundi nghbde roundi nghbde;

/1 (methods omitted)

14

5 Using the RGBA-only Interface for Tiled Files

5.1 Writing a Tiled RGBA Image File with One Resolution Level
Writing atiled RGBA image with asingle level is easy:

void
writeTi |l edRghaONEl (const char fileNane[],
const Rgba *pi xel s,
int width, int height,
int tileWwWdth, int tileHeight)

{
Ti | edRgbaQut put Fil e out (fil eNane,
wi dt h, hei ght, /1 image size
tileWdth, tileHeight, // tile size
ONE_LEVEL, /1 level node
ROUND_DOWN, /1 roundi ng node
WRI TE_RGBA) ; // channels in file // 1
out.set FraneBuffer (pixels, 1, width); /11 2
for (int tileY = 0; tileY < out.nun¥Tiles (); ++tileY) /1 3
for (int tileX =0; tileX < out.nunXTiles (); ++tileX) /1 4
out.writeTile (tileX, tileY); /15
}

Opening the file and defining the pixel datalayout in memory are done in amost the same way as for scan-
line-based files:

Construction of the Ti | edRgbhaCQut put Fi | e object, in line 1, creates an OpenEXR header, sets the
header's attributes, opens the file with the specified name, and stores the header in the file. The header's
display window and data window are both setto (0, 0) - (wi dth-1, height-1). The size of each
tileinthefilewill betil ewdth by til eHei ght pixels. The channel list contains four channels, R, G, B,
and A, of type HALF.

Line 2 specifies how the pixel data are laid out in memory. The arithmetic involved in calculating the
memory address of a specific pixel is the same as for the scan-line-based interface (see section 2.1). We
assume that the pi xel s pointer points to an array of wi dt h*hei ght pixels, which contains the entire
image.

Lines 3 and 4 loop over al tiles within the image. The Ti | edRgbaQut put Fi | e's nunmXTi | es() method
returns the number of tilesin the x direction, and similarly, the nunyTi | es() method returns the number
of tilesin they dimension. During these loops, line 5 writes out each tile in the image.

This simple method works well when enough memory is available to allocate a frame buffer for the entire
image. When allocating a frame buffer for the whole image is not desirable, for example because the image
is very large, a smaller frame buffer can be used. Even a frame buffer that can hold only a single tile is
sufficient, as demonstrated in the following example:

voi d

writeTil edRghaONE2 (const char fileNane[],

int width, int height,
int tilewWdth, int tileHeight)

{
Ti | edRgbaQut put Fil e out (fileNane,
wi dt h, height, /1 image size
tilewWdth, tileHeight, // tile size
ONE_LEVEL, /1 level node
ROUND_DOWW, // roundi ng node
WRI TE_RGBA) ; I/ channels in file // 1
Array2D<Rgba> pixels (tileHeight, tilewWdth); /11 2
for (int tileY = 0; tileY < out.nun¥Tiles (); ++tileY) /1 3
for (int tileX =0; tileX < out.nunXTiles (); ++tileX) /1 4
Box2i range = out.dataWndowForTile (tileX, tileY); /15

15

gener at ePi xel s (pixels, w dth, height, range); /1 6

out . set FrameBuffer (&pixels[-range.mn.y][-range.mn.x],
1, /1 xStride
tilewdth); // yStride 7

out.witeTile (tileX, tileY); /1 8

}

In line 2 we allocate a pi xel s array with til eWdth*til eHei ght elements, which is just enough for
onetile. Line 5 computes the data window range for each tile, that is, the set of pixel coordinates covered
by the tile. The gener at ePi xel s() function, in line 6, fills the pi xel s array with one tile's worth of
image data. The same pi xel s array is reused for al tiles. We must cal set FranmeBuffer (), inline7,
before writing each tile so that the pixels in the array are accessed properly inthewriteTile() cal in
line 8. Again, the address arithmetic to access the pixels is the same as for scan-line-based files. The values
for the base, xStri de, and ySt ri de arguments to the set Fr ameBuf f er () call must be chosen so that
evaluating the expression

base + x * xStride +y * yStride

produces the address of the pixel with coordinates (x, y) .

5.2 Writing a Tiled RGBA Image File with Mipmap Levels

In order to store a multiresolution image in a file, we can alocate a frame buffer large enough for the
highest-resolution level, (0, 0) , and reuse it for all levels:

voi d

witeTil edRghaM P1 (const char fileNane[],

int width, int height,
int tilewdth, int tileHeight)

{
Ti |l edRgbaQut put File out (fileNane,
wi dt h, height,
tilewdth, tileHeight,
M PMAP_LEVELS,
ROUND_DOWN,
VR TE_RGBA) ; /1
Array2D<Rgba> pi xel s (height, w dth); /Il 2
out.set FraneBuffer (&pixels[0][0], 1, wi dth); /1 3
for (int level = 0; level < out.nunlevels (); ++l evel) Il 4
gener at ePi xel s (pixels, width, height, level); /15
for (int tileY = 0; tileY < out.nun¥Tiles (level); ++tileY) /Il 6
for (int tileX =0; tileX < out.nunXTiles (level); ++tileX) 17
out.witeTile (tileX, tileY, level); /1 8
}
}

The main difference here is the use of M PMAP_LEVELS in line 1 for the Ti |l edRgbaQut putFil e
constructor. This signifies that the file will contain multiple levels, each level being afactor of 2 smaller in
both dimensions than the previous level. Mipmap images contain n levels, with level numbers

(0,0), (2,1, ... (n-1,n-1),

where
n = floor (log (max (width, height)) / log (2)) + 1

if the level size rounding mode is ROUND_DOWN, or
n =ceil (log (max (width, height)) / log (2)) + 1

16

if the level size rounding mode is ROUND_UP. Note that even though level numbers are pairs of integers,
(I'x,ly),onlylevelswherel x equals| y are used in M PMAP_LEVELS files.

Line 2 allocates a pi xel s array with wi dt h by hei ght pixels, big enough to hold the highest-resolution
level.

In addition to looping over al tiles (lines 6 and 7), we must loop over al levels in the image (line 4).
nunlLevel s() returns the number of levels, n, in our mipmapped image. Since the tile sizes remain the
same in al levels, the number of tiles in both dimensions varies between levels. nunXTi | es() and
nunTi | es() take alevel number as an optional argument, and return the number of tilesin the x or y
direction for the corresponding level. Line 5 fills the pi xel s array with appropriate data for each level.

Aswith ONE_LEVEL images, we can choose to only allocate a frame buffer for asingle tile and reuse it for
al tilesin the image:

voi d
witeTil edRgbhaM P2 (const char fileNane[],
int width, int height,
int tilewdth, int tileHeight)

{
Ti | edRgbaCut put Fil e out (fil eNaneg,
wi dt h, height,
tilewdth, tileHeight,
M PVAP_LEVELS,
ROUND_DOWN,
VRl TE_RGBA) ;
Array2D<Rgha> pixels (tileHeight, tilewWdth);
for (int level = 0; level < out.nunlLevels (); ++l evel)
for (int tileY = 0; tileY < out.nun¥Tiles (level); ++tileY)
for (int tileX = 0; tileX < out.nunXTiles (level); ++tileX)
{
Box2i range = out.dataWndowForTile (tileX, tileY, level);
gener at ePi xel s (pixels, w dth, height, range, |evel);
out . set FraneBuf fer (&pixels[-range.nmin.y][-range.nin.x],
1, /1 xStride
tilewdth); /1 yStride
out.writeTile (tileX, tileY, level);
}
}
}
}

The structure of this code is the same as for writing a ONE_LEVEL image using a tile-sized frame buffer,
but we have to loop over more tiles. Also, dat aw ndowor Ti | e() takes an additional level argument to
determine the pixel range for the tile at the specified level.

5.3 Writing a Tiled RGBA Image File with Ripmap Levels

The ripmap level mode allows for storing all combinations of reducing the resolution of the image by
powers of two independently in both dimensions. Ripmap files contains nx* ny levels, with level numbers:

(0, 0), (1, 0), ... (nx-1, 0),

(0, 1), (1, 1), ... (nx-1, 1),

(6;ﬁyfl), (1,ny-1), ... (nx-1,ny-1)
where

nx = floor (log (width) / log (2)) + 1
ny = floor (log (height) / log (2)) + 1

17

if the level size rounding mode is ROUND_DOWN, or

nx = ceil (log (width) / log (2)) + 1
ny = ceil (log (height) / log (2)) + 1
if the level size rounding mode is ROUND_UP.

With aframe buffer that islarge enough to hold level (0, 0) , we can write aripmap file like this:

voi d
witeTil edRgbaRI P1 (const char fileNane[],
int width, int height,
int tilewdth, int tileHeight)

{
Ti | edRgbaCut put Fil e out (fil eNaneg,
wi dt h, height,
tilewdth, tileHeight,
Rl PMAP_LEVELS,
ROUND_DOWN,
VRl TE_RGBA) ;
Array2D<Rgha> pi xel s (height, w dth);
out.set FraneBuffer (&pixels[0][0], 1, width);
for (int yLevel = 0; ylLevel < out.numvYLevels (); ++yLevel)
for (int xLevel = 0; xLevel < out.nunXLevels (); ++xLevel)
gener at ePi xel s (pixels, w dth, height, xLevel, yLevel);
for (int tileY = 0; tileY < out.nun¥Tiles (yLevel); ++tileY)
for (int tileX =0; tileX < out.nunXTiles (xLevel); ++tileX)
out.witeTile (tileX, tileY, xLevel, ylLevel);
}
}
}

Asfor ONE_LEVEL and M PMAP_LEVELS files, the frame buffer doesn't have to be large enough to hold a
whole level. Any frame buffer big enough to hold at least asingle tile will work.

5.4 Reading a Tiled RGBA Image File
Reading atiled RGBA image file is done similarly to writing one:

voi d
readTi | edRgbal (const char fileNane[],
Array2D<Rgba> &pi xel s,

int &width,
int &hei ght)
{
Til edRgbal nputFile in (fil eNanme);
Box2i dw = in.dataW ndow();
width = dw max.x - dw.mn.x + 1;
height = dw.nmax.y - dwnmin.y + 1;
int dx = dw. mn.Xx;
int dy = dw.mn.y;
pi xel s. resi zeErase (height, width);
in.setFrameBuffer (&pixels[-dy][-dx], 1, width);
for (int tileY = 0; tileY < in.nunmyTiles(); ++tileY)
for (int tileX =0; tileX < in.nunXTiles(); ++tileX)
in.readTile (tileX tileY);
}

First we need to create a Ti | edRgbal nput Fi | e object for the given file name. We then retrieve
information about the data window in order to create an appropriately sized frame buffer, in this case large

enough to hold the whole image at level (0, 0) . After we set the frame buffer, we iterate over the tiles we
areinterested in, and read them from the file.

18

This example only reads the highest-resolution level of the image. It can be extended to read all levels, for
multiresolution images, by also iterating over all levels within the image, analogous to the examples in
sections section 5.2 and 5.3.

19

6 Using the General Interface for Tiled Files

6.1 Writing a Tiled Image File

This example is a variation of the one in section 3.1, on page 9. We are writing a ONE_LEVEL image file
with two channels, G, and Z, of type HALF, and FLOAT respectively, but here the file is tiled instead of
scan-line-based:

voi d

witeTiledl (const char fileNane[],
Array2D<GZ> &pi xel s,
int width, int height,
int tileWwWdth, int tileHeight)

{
Header header (w dth, height); /11
header . channel s().insert ("G', Channel (HALF)); /11 2
header . channel s().insert ("Z", Channel (FLQCAT)); /1 3
header. set Ti | eDescri ption
(TileDescription (tilewWdth, tileHeight, ONE_LEVEL)); /1 4
TiledQutputFile out (fileNane, header); /15
FranmeBuf fer franeBuffer; /16
frameBuffer.insert ("G, /1 nane 17
Slice (HALF, Il type /1 8
(char *) &pixels[0][0].g /'l base /19
sizeof (pixels[0][0]) * 1, /1 xStride // 10
si zeof (pixels[0][0]) * width)); // yStride // 11
frameBuf fer.insert ("Z", /1 name /1 12
Slice (FLOAT, /1l type /1 13
(char *) &pixels[0][0].z, /1l base /1 14
si zeof (pixels[0][0]) * 1, [/l xStride // 15
sizeof (pixels[0][0]) * width)); // yStride // 16
out.set FraneBuffer (franmeBuffer); /117
for (int tileY = 0; tileY < out.nunmYTiles (); ++tileY) /1 18
for (int tileX =0; tileX < out.nunXTiles (); ++tileX) /1 19
out.witeTile (tileX, tileY); /1 20
}

As one would expect, the code here is very similar to the code in section 3.1. The file's header is created in
line 1, while lines 2 and 3 specify the names and types of the image channels that will be stored in the file.
An important addition isline 4, where we define the size of the tiles and the level mode. In this example we
use ONE_LEVEL for simplicity. Line 5 opens the file and writes the header. Lines 6 through 17 tell the
Ti | edCut put Fi | e object the location and layout of the pixel data for each channel. Finaly, lines 18
through 20 loop over dl tilesin the image and write out each tile.

6.2 Reading a Tiled Image File

Reading a tiled file with the general interface is virtually identical to reading a scan-line-based file, as
shown in section 3.4, on page 12; only the last three lines are different. Instead of reading all scan lines at
once with asingle function call, here we must iterate over all tiles we want to read.

voi d

readTil edl (const char fileNane[],

Array2D<GZ> &pi xel s,
int &width, int &height)

TiledlnputFile in (fil eName);

Box2i dw = in. header (). dataW ndow();
width = dw max. x dw. min.x + 1;
hei ght = dw. max.y - dw.nmn.y + 1;
int dx = dw mn.x;

20

int dy = dw.mn.y;
pi xel s. resi zeErase (height, width);
FrameBuf fer frameBuffer;

frameBuffer.insert ("G',
Slice (HALF,

(char *) &pixels[-dy][-dx].ag,
si zeof (pixels[0][0]) * 1,
sizeof (pixels[0][0]) * width));

frameBuffer.insert ("Z",
Slice (FLOAT,

(char *) &pixels[-dy][-dx].z,
sizeof (pixels[0][0]) * 1,
sizeof (pixels[0][0]) * width));

in.setFrameBuffer (frameBuffer);

for (int tileY = 0; tileY < in.nunmYTiles(); ++tileY)
for (int tileX =0; tileX < in.nunXTiles(); ++tileX)
in.readTile (tileX tileY);
}

In this example we assume that the file we want to read contains two channels, G and Z, of type HALF and
FLOAT respectively. If the file contains other channels, we ignore them. We only read the highest-
resolution level of the image. If the input file contains more levels (M PMAP_LEVELS or M PMAP_LEVELS),
we can access the extralevels by calling afour-argument version of ther eadTi | e() function:

in.readTile (tileX, tileY, levelX levelY);

21

7 Miscellaneous

7.1 Is this an OpenEXR File?

Sometimes we want to test quickly if a given file is an OpenEXR file. This can be done by looking at the
beginning of the file: The first four bytes of every OpenEXR file contain the 32-bit integer "magic
number" 20000630 in little-endian byte order. After reading afile'sfirst four bytes via any of the operating
system's standard file 1/0 mechanisms, we can compare them with the magic number, either by calling
function i sl nf Magi c() or by explicitly testing if the bytes contain the values 0x76, 0x2f, 0x31, and
0x01.

Given a file name, the following function returns true if the corresponding file exists, is readable, and
contains an OpenEXR image:

bool
i sQpenExrFile (const char fileNanme[])

std::ifstreamf (fileName, std::ios_base::binary);

char bytes[4];
f.read (bytes, sizeof (bytes));

return !'!'f & Inf::islnfMgic (bytes);

7.2 Custom Low-Level File I/0

In all of the previous file reading and writing examples, we were given a file name, and we relied on the
constructors for our input file or output file objects to open the file. In some contexts, for example in a
plugin for an existing application program, we may have to read from or write to a file that has already
been opened. The representation of the open file as a C or C++ data type depends on the application
program and on the operating system.

At its lowest level, the IImimf library performs file 1/O via objects of type | St ream and OStream
| Stream and OStream are abstract base classes. The IImimf library contains two derived classes,
Stdl FStream and StdOFStream that implement reading from std::ifstream and writing to
st d: : of st ream objects. An application program can implement aternative file /O mechanisms by
deriving its own classes from | st ream and Ostream This way, OpenEXR images can be stored in
arbitrary file-like objects, as long as it is possible to support read, write, seek and tell operations with
semantics similar to the corresponding st d: : i f st r eamand st d: : of st r eammethods.

For example, assume that we want to read an OpenEXR image from a C stdio file (of type FI LE *) that
has already been opened. To do this, we derive a new class, C | St ream from | St r eam The declaration
of class| St r eamlooks like this:

class | Stream

public:
virtual ~lIStream ();
virtual bool read (char c[], int n) = 0;

virtual Int64 tellg () = 0;

virtual void seekg (I nt64 pos) = 0;

virtual void clear ();

const char * fileName () const;
prot ect ed:

| Stream (const char fileNane[]);

private:

22

b
Our derived class needs a public constructor, and it must override four methods:
class CIStream public |IStream
public:

C | Stream (FILE *file, const char fileNanme[]):
IStream (fileName), _file (file) {}

virtual bool read (char c[], int n);
virtual Int64 tellg ();
virtual void seekg (I nt64 pos);
virtual void clear ();

private:
FI LE * _file;

}s

read(c, n) readsn bytes from thefile, and storesthem in array c. If reading hits the end of the file before
n bytes have been read, or if an I/O error occurs, r ead(c, n) throws an exception. If read(c, n) hitsthe
end of thefile after reading n bytes, it returnsf al se, otherwiseit returnst r ue:

bool
C IStream:read (char c[], int n)

if (n!=fread (c, 1, n, _file))
{

// fread() failed, but the return val ue does not distinguish
/1 between I/O errors and end of file, so we call ferror() to
/] determ ne what happened.

if (ferror (_file))
I ex: :throwErrnoExc();
el se
throw | ex:: I nput Exc ("Unexpected end of file.");

}

return feof (_file);

tel | g() returns the current reading position, in bytes, from the beginning of the file. The next call to
read() will begin reading at the indicated position:

Int64
C_IStream::tellg ()
{
return ftell (_file);

}

seekg(pos) setsthe current reading position to pos bytes from the beginning of thefile:

void
C_IStream::seekg (Int64 pos)
{
clearerr (_file);
fseek (_file, pos, SEEK_SET);
}

cl ear () clearsany error flagsthat may be set on the file after ar ead() or seekg() operation hasfailed:

void
C_IStream::clear ()
{

clearerr (_file);

}

In order to read an RGBA image from an open C stdio file, we first make a C_I St r eamobject. Then we
create an Rgbal nput Fi | e, passing the C | St r eaminstead of afile name to the constructor. After that, we
read the image as usual (see section 2.4, Reading an RGBA Image File, on page 5):

23

void

readRgbaFILE (FILE *cfile,
const char fileName[],
Array2D<Rgba> &pixels,
int &width,
int &height)

C_IStream istr (cfile, fileName);
RgbaInputFile file (istr);

Box2i dw = file.dataWindow () ;

width = dw.max.x - dw.min.x + 1;

height = dw.max.y - dw.min.y + 1;

pixels.resizeErase (height, width);

file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width, 1, width);
file.readPixels (dw.min.y, dw.max.y);

7.3 Preview Images

Graphical user interfaces for selecting image files often represent files as small preview or thumbnail

images. In order to make loading and displaying the preview images fast, OpenEXR files support storing
preview images in the file headers.

A preview image is an attribute whose value is of type Pr evi ewl mage. A Previ ew mage object is an
array of pixels of type Previ ewRgba. A pixel has four components, r, g, b and a, of type unsi gned
char, wherer, g and b are the pixel's red, green and blue components, encoded with agamma of 2.2. a is
the pixel's alpha channel; r, g and b should be premultiplied by a. On a typical display with 8-bits per
component, the preview image can be shown by simply loading the r, g and b components into the
display's frame buffer. (No gamma correction or tone mapping is required.)

The code fragment below shows how to test if an OpenEXR file has a preview image, and how to access a
preview image's pixels:

Rgbal nputFile file (fileNane);
if (file.header().hasPreview mage())
const Preview mage &preview = file.header(). preview mage();

for (int y = 0; y < preview height(); ++y)
for (int x = 0; x < previewwidth(); ++x)

const PreviewRgba &pi xel = preview. pixel (X, Yy);

}

Writing an OpenEXR file with a preview image is shown in the following example. Since the preview
image is an attribute in the file's header, it is entirely separate from the main image. Here the preview
image is a smaller version of the main image, but this is not required; in some cases storing an easily
recognizable icon may be more appropriate. This example uses the RGBA-only interface to write a scan-
line based file, but preview images are also supported for files that are written using the genera interface,
and for tiled files.
voi d
writeRgbaWthPreviewl (const char fileNane[],
const Array2D<Rgba> &pi xel s,
int width,
i nt hei ght)

Array2D <Previ ewRgha> previ ewPi xel s;
int previ ewwdth;
int previ ewHei ght;

~——
~——
B WN -

makePr evi ew nage (pixels, w dth, height, /1
previ ewPi xel s, previ ewW dt h, previ ewHei ght);

24

Header header (w dth, height); /15

header . set Previ ewl mage /1 6
(Previ ew nage (previ ewWdth, previ ewHei ght, &previewPi xel s[0][0]));

RgbaQutputFile file (fileName, header, WRI TE_RGBA);
file.setFrameBuffer (&pixels[0][0], 1, width);
file.witePixels (height);

—~——
—~——
© oo~

}

Lines 1 through 4 generate the preview image. Line 5 creates a header for the image file. Line 6 converts
the preview image into a Pr evi ew mage attribute, and adds the attribute to the header. Lines 7 through 9
store the header (with the preview image) and the main imagein afile.

Function makePr evi e mage(), caled in line 4, generates the preview image by scaling the main image
down to one eighth of its origina width and height:

voi d
makePrevi ewl nage (const Array2D<Rgba> &pi xel s,
int width,
i nt height,
Array2D<Previ ewRgha> &previ ewPi xel s,
int &previ ewW dth,
int &previ ewHei ght)
{

const int N = 8;
previewwWdth = width / N,
previ ewHei ght = height / N,
previ ewPi xel s. resi zeErase (previ ewHei ght, previ ewW dth);
for (int y = 0; y < previewHei ght; ++y)
for (int x = 0; x < previewNdth; ++x)

const Rgba & nPixel = pixels[y * NN[x * N;
Previ ewRgba &out Pi xel = previewPi xel s[y][x];

out Pi xel .r = gamma (inPixel.r);
out Pi xel . g = ganma (i nPixel.Qq);
out Pi xel . b = gamma (i nPi xel . b);
outPixel.a = int (clamp (inPixel.a * 255.f, 0.f, 255.f) + 0.5f);

}

To make this example easier to read, scaling the image is done by just sampling every eighth pixel of every
eighth scan line. This can lead to aliasing artifacts in the preview image; for a higher-quality preview
image, the main image should be lowpass-filtered before it is subsampl ed.

Function makePr evi ew mage() cals gamma() to convert the floating-point red, green, and blue
components of the sampled main image pixelsto unsi gned char values. gamma() isasimplified version
of what the exrdisplay program does in order to show an OpenEXR image's floating-point pixels on the
screen (for details, see exrdisplay's source code):
unsigned char
gamma (float x)
{
x = pow (5.5555f * max (0.f, x), 0.4545f) * 84.66f;
return (unsigned char) clamp (x, 0.f, 255.f);

}

makePr evi ew mage() converts the pixels apha component to unsigned char by by linearly mapping the
range [0.0, 1.0] to [0, 255].

Some programs write image files one scan line or tile at a time, while the image is being generated. Since
the image does not yet exist when the file is opened for writing, it is not possible to store a preview image
in the file's header at this time (unless the preview image is an icon that has nothing to do with the main
image). However, it is possible to store a blank preview image in the header when the file is opened. The

25

preview image can then be updated as the pixels become available. This is demonstrated in the following
example:

voi d

writeRgbaWthPreview2 (const char fileNane[],
int wdth,
int height)

{

Array <Rgba> pixels (width);

const int N = 8;

int previewNdth = width / N,

int previewHei ght = height / N,

Array2D <Previ ewRgha> previ ewPi xel s (previ ewHei ght, previ ewNdth);

Header header (w dth, height);
header . set Previ ewl nage (Previ ewl nage (previ ewW dth, previ ewHei ght));

RghaCut putFile file (fileName, header, WRI TE_RGBA);
file.setFrameBuffer (pixels, 1, 0);

for (int y = 0; y < height; ++y)
{

gener at ePi xel s (pixels, width, height, y);
file.witePixels (1);

if (y %N ==0)
for (int x =0; x <wdth; x += N

const Rgba & nPixel = pixels[x];
Previ ewRgba &out Pi xel = previewPixels[y / N[x / N;

out Pi xel .1 = gamma (inPixel.r);
out Pi xel . g = gamma (i nPixel.qg);
out Pi xel . b = gamma (i nPi xel . b);
outPixel.a = int (clamp (inPixel.a * 255.f, 0.f, 255.f) + 0.5f);

}
file.updatePreview mage (&previ ewPi xel s[0][0]);

7.4 Environment Maps

An environment map is an image that represents an omnidirectional view of a three-dimensional scene as
seen from a particular 3D location. Every pixel in the image corresponds to a 3D direction, and the data
stored in the pixel represent the amount of light arriving from this direction. In 3D rendering applications,
environment maps are often used for image-based lighting techniques that appoximate how objects are
illuminated by their surroundings. Environment maps with enough dynamic range to represent even the
brightest light sourcesin the environment are sometimes called "light probe images."

In an OpenEXR file, an environment map is stored as a rectangular pixel array, just like any other image,
but an attribute in the file header indicates that the image is an environment map. The attribute's value,
which is of type Envmap, specifies the relation between 2D pixel locations and 3D directions. Envirap isan
enumeration type. Two values are possible;

ENVIVAP_LATLONG
L atitude-Longitude Map: The environment is projected onto the image using polar coordinates (latitude
and longitude). A pixel's x coordinate corresponds to its longitude, and the y coordinate corresponds to

its latitude. The pixel in the upper left corner of the data window has latitude +r/2 and longitude +r; the
pixel in the lower right corner has latitude -m/2 and longitude -r.

26

In 3D space, latitudes -n/2 and +m/2 correspond to the negative and positive y direction. Latitude 0,
longitude O pointsin the positive z direction; latitude O, longitude ©t/2 pointsin the positive x direction.

For alatitude-longitude map, the size of the data window should be 2xN by N pixels (width by height),
where N can be any integer greater than 0.

dataWindow.min

lat. +7/2

v

lat. +7/2

long. +7

long. 0
_long.+1t/2

lat. —7/2
long. -1t

)

dataWindow.max

ENVVAP_CUBE

Cube Map: The environment is projected onto the six faces of an axis-aigned cube. The cube's faces
are then arranged in a 2D image as shown below.

For a cube map, the size of the data window should be N by 6xN pixels (width by height), where N can
be any integer greater than O.

3 Y 7
—t +X face
Y 1 5
6 Y 2
Z— -X face
2 I 3 4 0
6 7 6 z 7
—— X +Y face
2 3
0 1
— X
/ — X -Y face
z 4 Z 5
0 1 7 Y 6
X— +Z face
4 5 5 4
2 Y 38
—t X -Z face
0 1
- max

27

The following code fragment tests if an OpenEXR file contains an environment map, and if it does, which
kind:

RgbaInputFile file (fileName);

if (hasEnvmap (file.header()))
{

Envmap type = envmap (file.header());

}

For each kind of environment map, the IImimf library provides a set of routines that convert from 3D
directions to 2D floating-point pixel locations and back. Those routines are useful in application programs
that create environment maps and in programs that perform map lookups. For details, see header file
| nf Envimap. h.

7.5 Thread-Safety

Except for inititialization, the IImimf library is thread-safe in the following sense: In a multithreaded
application program, multiple threads can concurrently read and write distinct OpenEXR files, but
multithreaded reading or writing of a single file requires mutual exclusion. In other words, each thread can
independently create, use and destroy its own input and output file objects, but if multiple threads share a
single input or output file object, then the application program must ensure mutual exclusion between the
threads during accesses to the object.

Before any OpenEXR files can be read or written, the IImimf library must initialize some internal data
structures that are shared between threads. In order to ensure that initiaization happens in a thread-safe
manner, a multithreaded application program must call the Imf: :staticInitialize () function before
accessing any other functions or classes in the IImimf library. In a single-threaded program initialization
happens automatically; it is not necessary to call Imf: :staticInitialize ().

28

