
Reading and Writing OpenEXR Image Files with the
IlmImf Library

Last Update: 02/03/05

This document shows how to write C++ code that reads and writes OpenEXR image files. The text
assumes that the reader is familiar with OpenEXR terms like "channel", "attribute", or "data window". For
an explanation of those terms see the Technical Introduction to OpenEXR document. The OpenEXR
source distribution contains a subdirectory, IlmImfExamples, with most of the code examples below. A
Makefile is also provided, so that the examples can easily be compiled and run.

Table of Contents

1 Scan-line-based and Tiled OpenEXR files..2
2 Using the RGBA-only Interface for Scan-line-based Files...3

2.1 Writing an RGBA Image File..3
2.2 Writing a Cropped Image..4
2.3 Storing Custom Attributes...5
2.4 Reading an RGBA Image File...5
2.5 Reading an RGBA Image File in Chunks...6
2.6 Reading Custom Attributes...7
2.7 Luminance/Chroma and Gray-Scale Images..8

3 Using the General Interface for Scan-line-based Files..9
3.1 Writing an Image File..9
3.2 Writing a Cropped Image..10
3.3 Reading an Image File...10
3.4 Interleaving Image Channels in the Frame Buffer...12
3.5 Which Channels are in a File?...13

4 Tiles, Levels and Level Modes..14
5 Using the RGBA-only Interface for Tiled Files..15

5.1 Writing a Tiled RGBA Image File with One Resolution Level...15
5.2 Writing a Tiled RGBA Image File with Mipmap Levels...16
5.3 Writing a Tiled RGBA Image File with Ripmap Levels..17
5.4 Reading a Tiled RGBA Image File...18

6 Using the General Interface for Tiled Files...20
6.1 Writing a Tiled Image File..20
6.2 Reading a Tiled Image File...20

7 Miscellaneous...22
7.1 Is this an OpenEXR File?..22
7.2 Custom Low-Level File I/O..22
7.3 Preview Images..24
7.4 Environment Maps..26
7.5 Thread-Safety...28

1

1 Scan­line­based and Tiled OpenEXR files

In an OpenEXR file, pixel data can be stored either as scan lines or as tiles. Files that store pixels as tiles
can also store multiresolution images. For each of the two storage formats (scan line or tile-based), the
IlmImf library supports two reading and writing interfaces: the first, fully general, interface allows access
to arbitrary channels, and supports many different in-memory pixel data layouts. The second interface is
easier to use, but limits access to 16-bit (HALF) RGBA (red, green, blue, alpha) channels, and provides
fewer options for laying out pixels in memory.

The interfaces for reading and writing OpenEXR files are implemented in the following eight C++ classes:

tiles scan lines scan lines and tiles

arbitrary channels TiledInputFile InputFile

TiledOutputFile OutputFile

RGBA only TiledRgbaInputFile RgbaInputFile

TiledRgbaOutputFile RgbaOutputFile

The classes for reading scan-line-based images (InputFile and RgbaInputFile) can also be used to
read tiled image files. This way, programs that do not need support for tiled or multiresolution images can
always use the rather straightforward scan-line interfaces, without worrying about complications related to
tiling and multiple resolutions. When a multiresolution file is read via a scan-line interface, only the
highest-resolution version of the image is accessible.

2

2 Using the RGBA­only Interface for Scan­line­based Files

2.1 Writing an RGBA Image File

Writing a simple RGBA image file is fairly straightforward:

 void
 writeRgba1 (const char fileName[],
 const Rgba *pixels,
 int width,
 int height)
 {
 RgbaOutputFile file (fileName, width, height, WRITE_RGBA); // 1
 file.setFrameBuffer (pixels, 1, width); // 2
 file.writePixels (height); // 3
 }

Construction of an RgbaOutputFile object, in line 1, creates an OpenEXR header, sets the header's
attributes, opens the file with the specified name, and stores the header in the file. The header's display
window and data window are both set to (0, 0) - (width-1, height-1). The channel list contains
four channels, R, G, B, and A, of type HALF.

Line 2 specifies how the pixel data are laid out in memory. In our example, the pixels pointer is assumed
to point to the beginning of an array of width*height pixels. The pixels are represented as Rgba structs,
which are defined like this:

 struct Rgba
 {
 half r; // red
 half g; // green
 half b; // blue
 half a; // alpha (opacity)
 };

The elements of our array are arranged so that the pixels of each scan line are contiguous in memory.
The setFrameBuffer() function takes three arguments, base, xStride, and ystride. To find the
address of pixel (x,y), the RgbaOutputFile object computes

 base + x * xStride + y * yStride.

In this case, base, xStride and yStride are set to pixels, 1, and width, respectively, indicating that
pixel (x,y) can be found at memory address

 pixels + 1 * x + width * y.

The call to writePixels(), in line 3, copies the image's pixels from memory to the file. The argument to
writePixels(), height, specifies how many scan lines worth of data are copied.

Finally, returning from function writeRgba1() destroys the local RgbaOutputFile object, thereby
closing the file.

Why do we have to tell the writePixels() function how many scan lines we want to write? Shouldn't
the RgbaOutputFile object be able to derive the number of scan lines from the data window? The IlmImf
library doesn't require writing all scan lines with a single writePixels() call. Many programs want to
write scan lines individually, or in small blocks. For example, rendering computer-generated images can
take a significant amount of time, and many rendering programs want to store each scan line in the image
file as soon as all of the pixels for that scan line are available. This way, users can look at a partial image
before rendering is finished. The IlmImf library allows writing the scan lines in top-to-bottom or bottom-
to-top direction. The direction is defined by the file header's line order attribute (INCREASING_Y or
DECREASING_Y). By default, scan lines are written top to bottom (INCREASING_Y).

You may have noticed that in the example above, there are no explicit checks to verify that writing the file
actually succeeded. If the IlmImf library detects an error, it throws a C++ exception instead of returning a
C-style error code. With exceptions, error handling tends to be easier to get right than with error return

3

values. For instance, a program that calls our writeRgba1() function can handle all possible error
conditions with a single try/catch block:

 try
 {
 writeRgba1 (fileName, pixels, width, height);
 }
 catch (const std::exception &exc)
 {
 std::cerr << exc.what() << std::endl;
 }

2.2 Writing a Cropped Image

Now we are going to store a cropped image in a file. For this example, we assume that we have a frame
buffer that is large enough to hold an image with width by height pixels, but only part of the frame
buffer contains valid data. In the file's header, the size of the whole image is indicated by the display
window, (0, 0) - (width-1, height-1), and the data window specifies the region for which valid
pixel data exist. Only the pixels in the data window are stored in the file.

 void
 writeRgba2 (const char fileName[],
 const Rgba *pixels,
 int width,
 int height,
 const Box2i &dataWindow)
 {
 Box2i displayWindow (V2i (0, 0), V2i (width - 1, height - 1));
 RgbaOutputFile file (fileName, displayWindow, dataWindow, WRITE_RGBA);
 file.setFrameBuffer (pixels, 1, width);
 file.writePixels (dataWindow.max.y - dataWindow.min.y + 1);
 }

The code above is similar to that in section 2.1, where the whole image was stored in the file. Two things
are different, however: When the RgbaOutputFile object is created, the data window and the display
window are explicitly specified rather than being derived from the image's width and height. The number
of scan lines stored in the file by writePixels() is equal to the height of the data window instead of the
height of the whole image. Since we are using the default INCREASING_Y direction for storing the scan
lines in the file, writePixels() starts at the top of the data window, at y coordinate
dataWindow.min.y, and proceeds toward the bottom, at y coordinate dataWindow.max.y.

Even though we are storing only part of the image in the file, the frame buffer is still large enough to hold
the whole image. In order to save memory, a smaller frame buffer could have been allocated, just big
enough to hold the contents of the data window. Assuming that the pixels were still stored in contiguous
scan lines, with the pixels pointer pointing to the pixel at the upper left corner of the data window, at
coordinates (dataWindow.min.x, dataWindow.min.y), the arguments to the setFrameBuffer()
call would have to be to be changed as follows:

 int dwWidth = dataWindow.max.x - dataWindow.min.x + 1;

 file.setFrameBuffer
 (pixels - dataWindow.min.x - dataWindow.min.y * dwWidth, 1, dwWidth);

With these settings, evaluation of

 base + x * xStride + y * yStride

for pixel (dataWindow.min.x, dataWindow.min.y) produces

4

 pixels ­ dataWindow.min.x ­ dataWindow.min.y * dwWidth
 + dataWindow.min.x * 1
 + dataWindow.min.y * dwWidth

 = pixels ­
 ­ dataWindow.min.x
 ­ dataWindow.min.y * (dataWindow.max.x ­ dataWindow.min.x + 1)
 + dataWindow.min.x
 + dataWindow.min.y * (dataWindow.max.x ­ dataWindow.min.x + 1)

 = pixels,

which is exactly what we want. Similarly, calculating the addresses for pixels (dataWindow.min.x+1,
dataWindow.min.y) and (dataWindow.min.x, dataWindow.min.y+1) yields pixels+1 and
pixels+dwWidth, respectively.

2.3 Storing Custom Attributes

We will now to store an image in a file, and we will add two extra attributes to the image file header: a
string, called "comments", and a 4×4 matrix, called "cameraTransform".

 void
 writeRgba3 (const char fileName[],
 const Rgba *pixels,
 int width,
 int height,
 const char comments[],
 const M44f &cameraTransform)
 {
 Header header (width, height);
 header.insert ("comments", StringAttribute (comments));
 header.insert ("cameraTransform", M44fAttribute (cameraTransform));

 RgbaOutputFile file (fileName, header, WRITE_RGBA);
 file.setFrameBuffer (pixels, 1, width);
 file.writePixels (height);
 }

The setFrameBuffer() and writePixels() calls are the same as in the previous examples, but
construction of the RgbaOutputFile object is different. The constructors in the previous examples
automatically created a header on the fly, and immediately stored it in the file. Here we explicitly create a
header and add our own attributes to it. When we create the RgbaOutputFile object, we tell the
constructor to use our header instead of creating its own.

In order to make it easier to exchange data between programs written by different people, the IlmImf
library defines a set of standard attributes for commonly used data, such as colorimetric information, time
and place where an image was recorded, or the owner of an image file's content. For the current list of
standard attributes, see the header file ImfStandardAttributes.h. The list is expected to grow over
time as OpenEXR users identify new types of data they would like to represent in a standard format. If you
need to store some piece of information in an OpenEXR file header, it is probably a good idea to check if a
suitable standard attribute exists, before you define a new attribute.

2.4 Reading an RGBA Image File

Reading an RGBA image is almost as easy as writing one:

 void
 readRgba1 (const char fileName[],
 Array2D<Rgba> &pixels,
 int &width,
 int &height)
 {
 RgbaInputFile file (fileName);
 Box2i dw = file.dataWindow();

 width = dw.max.x - dw.min.x + 1;
 height = dw.max.y - dw.min.y + 1;

5

 pixels.resizeErase (height, width);

 file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width, 1, width);
 file.readPixels (dw.min.y, dw.max.y);
 }

Constructing an RgbaInputFile object, passing the name of the file to the constructor, opens the file and
reads the file's header.

After asking the RgbaInputFile object for the file's data window, we allocate a buffer for the pixels. For
convenience, we use the IlmImf library's Array2D class template (the call to resizeErase() does the
actual allocation). The number of scan lines in the buffer is equal to the height of the data window, and the
number of pixels per scan line is equal to the width of the data window. The pixels are represented as Rgba
structs.

Note that we ignore the display window in this example; in a program that wanted to place the pixels in the
data window correctly in an overall image, the display window would have to be taken into account.

Just as for writing a file, calling setFrameBuffer() tells the RgbaInputFile object how to access
individual pixels in the buffer (see also section 2.2, Writing a Cropped Image, on page 4).

Calling readPixels() copies the pixel data from the file into the buffer. If one or more of the R, G, B,
and A channels are missing in the file, the corresponding field in the pixels is filled with an appropriate
default value. The default value for R, G and B is 0.0, or black; the default value for A is 1.0, or opaque.

Finally, returning from function readRgba1() destroys the local RgbaInputFile object, thereby closing
the file.

Unlike the RgbaOutputFile's writePixels() method, readPixels() has two arguments. Calling
readPixels(y1,y2) copies the pixels for all scan lines with y coordinates from y1 to y2 into the frame
buffer. This allows access to the the scan lines in any order. The image can be read all at once, one scan
line at a time, or in small blocks of a few scan lines. It is also possible to skip parts of the image.

Note that even though random access is possible, reading the scan lines in the same order as they were
written, is more efficient. Random access to the file requires seek operations, which tend to be slow.
Calling the RgbaInputFile's lineOrder() method returns the order in which the scan lines in the file were
written (INCREASING_Y or DECREASING_Y). If successive calls to readPixels() access the scan lines in
the right order, the IlmImf library reads the file as fast as possible, without seek operations.

2.5 Reading an RGBA Image File in Chunks

The following shows how to read an RGBA image in blocks of a few scan lines. This is useful for
programs that want to process high-resolution images without allocating enough memory to hold the
complete image. These programs typically read a few scan lines worth of pixels into a memory buffer,
process the pixels, and store them in another file. The buffer is then re-used for the next set of scan lines.
Image operations like color-correction or compositing ("A over B") are very easy to do incrementally this
way. With clever buffering of a few extra scan lines, incremental versions of operations that require access
to neighboring pixels, like blurring or sharpening, are also possible.

 void
 readRgba2 (const char fileName[])
 {
 RgbaInputFile file (fileName);
 Box2i dw = file.dataWindow();

 int width = dw.max.x - dw.min.x + 1;
 int height = dw.max.y - dw.min.y + 1;
 Array2D<Rgba> pixels (10, width);

 while (dw.min.y <= dw.max.y)
 {
 file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width,
 1, width);

 file.readPixels (dw.min.y, min (dw.min.y + 9, dw.max.y));

6

 // processPixels (pixels)

 dw.min.y += 10;
 }
 }

Again, we open the file and read the file header by constructing an RgbaInputFile object. Then we
allocate a memory buffer that is just large enough to hold ten complete scan lines. We call readPixels()
to copy the pixels from the file into our buffer, ten scan lines at a time. Since we want to re-use the buffer
for every block of ten scan lines, we have to call setFramebuffer() before each readPixels() call, in
order to associate memory address &pixels[0][0] first with pixel coordinates
(dw.min.x, dw.min.y), then with (dw.min.x, dw.min.y+10), (dw.min.x, dw.min.y+20) and
so on.

2.6 Reading Custom Attributes

In section 2.3, we showed how to store custom attributes in the image file header. Here we show how to
test whether a given file's header contains particular attributes, and how to read those attributes' values.

 void
 readHeader (const char fileName[])
 {
 RgbaInputFile file (fileName);

 const StringAttribute *comments =
 file.header().findTypedAttribute <StringAttribute> ("comments");

 const M44fAttribute *cameraTransform =
 file.header().findTypedAttribute <M44fAttribute> ("cameraTransform");

 if (comments)
 cout << "comments\n " << comments->value() << endl;

 if (cameraTransform)
 cout << "cameraTransform\n" << cameraTransform->value() << flush;
 }

As usual, we open the file by constructing an RgbaInputFile object. Calling findTypedAttribute<T>
(n) searches the header for an attribute with type T and name n. If a matching attribute is found,
findTypedAttribute() returns a pointer to the attribute. If the header contains no attribute with name
n, or if the header contains an attribute with name n, but the attribute's type is not T, findAttribute()
returns 0. Once we have pointers to the attributes we were looking for, we can access their values by
calling the attributes' value() methods.

In this example, we handle the possibility that the attributes we want may not exist by explicitly checking
for 0 pointers. Sometimes it is more convenient to rely on exceptions instead. Function typedAttribute
(), a variation of findTypedAttribute(), also searches the header for an attribute with a given name
and type, but if the attribute in question does not exist, typedAttribute() throws an exception rather
than returning 0.

Note that the pointers returned by findTypedAttribute() point to data that are part of the
RgbaInputFile object. The pointers become invalid as soon as the RgbaInputFile object is destroyed.
Therefore, the following will not work:

 void
 readComments (const char fileName[], StringAttribute *&comments)
 {
 // error: comments pointer is invalid after this function returns
 RgbaInputFile file (fileName);
 comments = file.header().findTypedAttribute <StringAttribute> ("comments");
 }

7

readComments() must copy the attribute's value before it returns; for example, like this:

 void
 readComments (const char fileName[], string &comments)
 {

 RgbaInputFile file (fileName);
 comments = file.header().typedAttribute<StringAttribute>("comments").value();
 }

2.7 Luminance/Chroma and Gray­Scale Images

Writing an RGBA image file usually preserves the pixels without losing any data; saving an image file and
reading it back does not alter the pixels' R, G, B and A values. Most of the time, lossless data storage is
exactly what we want, but sometimes file space or transmission bandwidth are limited, and we would like
to reduce the size of our image files. It is often acceptable if the numbers in the pixels change slightly as
long as the image still looks just like the original.

The RGBA interface in the IlmImf library supports storing RGB data in luminance/chroma format. The R,
G, and B channels are converted into a luminance channel, Y, and two chroma channels, RY and BY. The
Y channel represents a pixel's brightness, and the two chroma channels represent its color. The human
visual system's spatial resolution for color is much lower than the spatial resolution for brightness. This
allows us to reduce the horizontal and vertical resolution of the RY and BY channels by a factor of two.
The visual appearance of the image doesn't change, but the image occupies only half as much space, even
before data compression is applied. (For every four pixels, we store four Y values, one RY value, and one
BY value, instead of four R, four G, and four B values.)

When opening a file for writing, a program can select how it wants the pixels to be stored. The constructors
for class RgbaOutputFile have an rgbaChannels argument, which determines the set of channels in the
file:

WRITE_RGB red, green, blue

WRITE_RGBA red, green, blue, alpha

WRITE_YC luminance, chroma

WRITE_YCA luminance, chroma, alpha

WRITE_Y luminance only

WRITE_YA luminance, alpha

WRITE_Y and WRITE_YA provide an efficient way to store gray-scale images. The chroma channels for a
gray-scale image contain only zeroes, so they can be omitted from the file.

When an image file is opened for reading, class RgbaInputFile automatically detects luminance/chroma
images and converts the pixels back to RGB format.

8

3 Using the General Interface for Scan­line­based Files

3.1 Writing an Image File

This example demonstrates how to write an OpenEXR image file with two channels: one channel, of type
HALF, is called G, and the other, of type FLOAT, is called Z. The size of the image is width by height
pixels. The data for the two channels are supplied in two separate buffers, gPixels and zPixels. Within
each buffer, the pixels of each scan line are contiguous in memory.

 void
 writeGZ1 (const char fileName[],
 const half *gPixels,
 const float *zPixels,
 int width,
 int height)
 {
 Header header (width, height); // 1
 header.channels().insert ("G", Channel (HALF)); // 2
 header.channels().insert ("Z", Channel (FLOAT)); // 3

 OutputFile file (fileName, header); // 4

 FrameBuffer frameBuffer; // 5

 frameBuffer.insert ("G", // name // 6
 Slice (HALF, // type // 7
 (char *) gPixels, // base // 8
 sizeof (*gPixels) * 1, // xStride// 9
 sizeof (*gPixels) * width)); // yStride// 10

 frameBuffer.insert ("Z", // name // 11
 Slice (FLOAT, // type // 12
 (char *) zPixels, // base // 13
 sizeof (*zPixels) * 1, // xStride// 14
 sizeof (*zPixels) * width)); // yStride// 15

 file.setFrameBuffer (frameBuffer); // 16
 file.writePixels (height); // 17
 }

In line 1, an OpenEXR header is created, and the header's display window and data window are both set to
(0, 0) - (width-1, height-1).

Lines 2 and 3 specify the names and types of the image channels that will be stored in the file.

Constructing an OutputFile object in line 4 opens the file with the specified name, and stores the header
in the file.

Lines 5 through 16 tell the OutputFile object how the pixel data for the image channels are laid out in
memory. After constructing a FrameBuffer object, a Slice is added for each of the image file's channels.
A Slice describes the memory layout of one channel. The constructor for the Slice object takes four
arguments, type, base, xStride, and yStride. type specifies the pixel data type (HALF, FLOAT, or
UINT); the other three arguments define the memory address of pixel (x,y) as

 base + x * xStride + y * yStride.

Note that base is of type char*, and that offsets from base are not implicitly multiplied by the size of an
individual pixel, as in the RGBA-only interface. xStride and yStride must explictly take the size of the
pixels into account.

With the values specified in our example, the IlmImf library computes the address of the G channel of
pixel (x,y) like this:

 (half*)((char*)gPixels + x * sizeof(half) * 1 + y * sizeof(half) * width)
 = (half*)((char*)gPixels + x * 2 + y * 2 * width),

9

The address of the Z channel of pixel (x,y) is

 (float*)((char*)zPixels + x * sizeof(float) * 1 + y * sizeof(float) * width)
 = (float*)((char*)zPixels + x * 4 + y * 4 * width).

The writePixels() call in line 9 copies the image's pixels from memory into the file. As in the RGBA-
only interface, the argument to writePixels() specifies how many scan lines are copied into the file (see
section 2.1, Writing an RGBA Image File, on page 3).

If the image file contains a channel for which the FrameBuffer object has no corresponding Slice, then
the pixels for that channel in the file are filled with zeroes. If the FrameBuffer object contains a Slice
for which the file has no channel, then the Slice is ignored.

Returning from function writeGZ1() destroys the local OutputFile object and closes the file.

3.2 Writing a Cropped Image

Writing a cropped image using the general interface is analogous to writing a cropped image using the
RGBA-only interface, as shown in section 2.2, on page 4: In the file's header the data window is set
explicitly instead of being generated automatically from the image's width and height. The number of scan
lines that are stored in the file is equal to the height of the data window, instead of the height of the entire
image. As in section 2.2, the example code below assumes that the memory buffers for the pixels are large
enough to hold width by height pixels, but only the region that corresponds to the data window will be
stored in the file. For smaller memory buffers with room only for the pixels in the data window, the base,
xStride and yStride arguments for the FrameBuffer object's slices would have to be adjusted
accordingly (again, see section 2.2).

 void
 writeGZ2 (const char fileName[],
 const half *gPixels,
 const float *zPixels,
 int width,
 int height,
 const Box2i &dataWindow)
 {
 Header header (width, height);
 header.dataWindow() = dataWindow;
 header.channels().insert ("G", Channel (HALF));
 header.channels().insert ("Z", Channel (FLOAT));

 OutputFile file (fileName, header);

 FrameBuffer frameBuffer;

 frameBuffer.insert ("G", // name
 Slice (HALF, // type
 (char *) gPixels, // base
 sizeof (*gPixels) * 1, // xStride
 sizeof (*gPixels) * width)); // yStride

 frameBuffer.insert ("Z", // name
 Slice (FLOAT, // type
 (char *) zPixels, // base
 sizeof (*zPixels) * 1, // xStride
 sizeof (*zPixels) * width)); // yStride

 file.setFrameBuffer (frameBuffer);
 file.writePixels (dataWindow.max.y - dataWindow.min.y + 1);
 }

3.3 Reading an Image File

In this example, we read an OpenEXR image file using the IlmImf library's general interface. We assume
that the file contains two channels, R, and G, of type HALF, and one channel, Z, of type FLOAT. If one of

10

those channels is not present in the image file, the corresponding memory buffer for the pixels will be
filled with an appropriate default value.

 void
 readGZ1 (const char fileName[],
 Array2D<half> &rPixels,
 Array2D<half> &gPixels,
 Array2D<float> &zPixels,
 int &width, int &height)
 {
 InputFile file (fileName);

 Box2i dw = file.header().dataWindow();
 width = dw.max.x - dw.min.x + 1;
 height = dw.max.y - dw.min.y + 1;

 rPixels.resizeErase (height, width);
 gPixels.resizeErase (height, width);
 zPixels.resizeErase (height, width);

 FrameBuffer frameBuffer;

 frameBuffer.insert ("R", // name
 Slice (HALF, // type
 (char *) (&rPixels[0][0] - // base
 dw.min.x -
 dw.min.y * width),
 sizeof (rPixels[0][0]) * 1, // xStride
 sizeof (rPixels[0][0]) * width,// yStride
 1, 1, // x/y sampling
 0.0)); // fillValue

 frameBuffer.insert ("G", // name
 Slice (HALF, // type
 (char *) (&gPixels[0][0] - // base
 dw.min.x -
 dw.min.y * width),
 sizeof (gPixels[0][0]) * 1, // xStride
 sizeof (gPixels[0][0]) * width,// yStride
 1, 1, // x/y sampling
 0.0)); // fillValue

 frameBuffer.insert ("Z", // name
 Slice (FLOAT, // type
 (char *) (&zPixels[0][0] - // base
 dw.min.x -
 dw.min.y * width),
 sizeof (zPixels[0][0]) * 1, // xStride
 sizeof (zPixels[0][0]) * width,// yStride
 1, 1, // x/y sampling
 FLT_MAX)); // fillValue

 file.setFrameBuffer (frameBuffer);
 file.readPixels (dw.min.y, dw.max.y);
 }

First, we open the file with the specified name, by constructing an InputFile object.

Using the Array2D class template, we allocate memory buffers for the image's R, G and Z channels. The
buffers are big enough to hold all pixels in the file's data window.

Next, we create a FrameBuffer object, which describes our buffers to the IlmImf library. For each image
channel, we add a slice to the FrameBuffer.

As usual, the slice's type, xStride, and yStride describe the corresponding buffer's layout. For the R
channel, pixel (dw.min.x, dw.min.y) is at address &rPixels[0][0]. By setting the type, xStride
and yStride of the corresponding Slice object as shown above, evaluating

 base + x * xStride + y * yStride

for pixel (dw.min.x, dw.min.y) produces

11

 (char*)(&rPixels[0][0] ­ dw.min.x ­ dw.min.y * width)
 + dw.min.x * sizeof (rPixels[0][0]) * 1
 + dw.min.y * sizeof (rPixels[0][0]) * width

 = (char*)&rPixels[0][0]
 ­ dw.min.x * sizeof (rPixels[0][0])
 ­ dw.min.y * sizeof (rPixels[0][0]) * width
 + dw.min.x * sizeof (rPixels[0][0])
 + dw.min.y * sizeof (rPixels[0][0]) * width

 = &rPixels[0][0].

The address calculations for pixels (dw.min.x+1, dw.min.y) and (dw.min.x, dw.min.y+1)
produce &rPixels[0][0]+1 and &rPixels[0][0]+width, which is equivalent to &rPixels[0][1]
and &rPixels[1][0].

Each Slice has a fillValue. If the image file does not contain an image channel for the Slice, then the
corresponding memory buffer will be filled with the fillValue.

The Slice's remaining two parameters, xSampling and ySampling are used for images where some of
the channels are subsampled, for instance, the RY and BY channels in luminance/chroma images. (see
section 2.7, Luminance/Chroma and Gray-scale Images, on page 8). Unless an image contains subsampled
channels, xSampling and ySampling should always be set to 1. For details see header files
ImfFrameBuffer.h and ImfChannelList.h.

After describing our memory buffers' layout, we call readPixels() to copy the pixel data from the file
into the buffers. Just as with the RGBA-only interface, readPixels() allows random-access to the scan
lines in the file (see section 2.5 Reading an RGBA Image File, on page 6).

3.4 Interleaving Image Channels in the Frame Buffer

Here is a variation of the previous example. We are reading an image file, but instead of storing each image
channel in a separate memory buffer, we interleave the channels in a single buffer. The buffer is an array of
structs, which are defined like this:

 typedef struct GZ
 {
 half g;
 float z;
 };

The code to read the file is almost the same as before; aside from reading only two instead of three
channels, the only difference is how base, xStride and yStride for the Slices in the FrameBuffer
object are computed:

 void
 readGZ2 (const char fileName[],
 Array2D<GZ> &pixels,
 int &width, int &height)
 {
 InputFile file (fileName);

 Box2i dw = file.header().dataWindow();
 width = dw.max.x - dw.min.x + 1;
 height = dw.max.y - dw.min.y + 1;
 int dx = dw.min.x;
 int dy = dw.min.y;

 pixels.resizeErase (height, width);

 FrameBuffer frameBuffer;

 frameBuffer.insert ("G",
 Slice (HALF,
 (char *) &pixels[-dy][-dx].g,
 sizeof (pixels[0][0]) * 1,
 sizeof (pixels[0][0]) * width));

12

 frameBuffer.insert ("Z",
 Slice (FLOAT,
 (char *) &pixels[-dy][-dx].z,
 sizeof (pixels[0][0]) * 1,
 sizeof (pixels[0][0]) * width));

 file.setFrameBuffer (frameBuffer);
 file.readPixels (dw.min.y, dw.max.y);
 }

3.5 Which Channels are in a File?

In functions readGZ1() and readGZ2(), above, we simply assumed that the files we were trying to read
contained a certain set of channels. We relied on the IlmImf library to do "something reasonable" in case
our assumption was not true. Sometimes we want to know exactly what channels are in an image file
before reading any pixels, so that we can do what we think is appropriate.

The file's header contains the file's channel list. Using iterators similar to those in the C++ Standard
Template Library, we can iterate over the channels:

 const ChannelList &channels = file.header().channels();

 for (ChannelList::ConstIterator i = channels.begin(); i != channels.end(); ++i)
 {
 const Channel &channel = i­>second;
 // ...
 }

Channels can also be accessed by name, either with the [] operator, or with the findChannel() function:

 const ChannelList &channels = file.header().channels();
 const Channel &channel = channelList["G"];
 const Channel *channelPtr = channelList.findChannel("G");

The difference between the [] operator and findChannel() function is how errors are handled: If the
channel in question is not present, findChannel() returns 0; the [] operator throws an exception.

13

4 Tiles, Levels and Level Modes

A single tiled OpenEXR file can hold multiple versions of an image, each with a different resolution. Each
version is called a level. A tiled file's level mode defines how many levels are stored in the file. There are
three different level modes:

ONE_LEVEL The file contains only a single, full-resolution level. A ONE_LEVEL image file
is equivalent to a scan-line-based file; the only difference is that the pixels are
accessed by tile instead of by scan line.

MIPMAP_LEVELS The file contains multiple levels. The first level holds the image at full
resolution. Each successive level is half the resolution of the previous level in x
and y direction. The last level contains only a single pixel. MIPMAP_LEVELS
files are used for texture-mapping and similar applications.

RIPMAP_LEVELS Like MIPMAP_LEVELS, but with more levels. The levels include all
combinations of reducing the resolution of the image by powers of two
independently in x and y direction. Used for texture mapping, like
MIPMAP_LEVELS. The additional levels in a RIPMAP_LEVELS file can help to
accelerate anisotropic filtering during texture lookups.

In MIPMAP_LEVELS and RIPMAP_LEVELS mode, the size (width or height) of each level is computed by
halving the size of the level with the next higher resolution. If the size of the higher-resolution level is odd,
then the size of the lower-resolution level must be rounded up or down in order to avoid arriving at a non-
integer width or height. The rounding direction is determined by the file's level size rounding mode.

Within each level, the pixels of the image are stored in a two-dimensional array of tiles. The tiles in an
OpenEXR file can be any rectangular shape, but all tiles in a file have the same size. This means that
lower-resolution levels contain fewer, rather than smaller, tiles.

An OpenEXR file's level mode and rounding mode, and the size of the tiles are stored in an attribute in the
file header. The value of this attribute is a TileDescription object:

 enum LevelMode
 {
 ONE_LEVEL,
 MIPMAP_LEVELS,
 RIPMAP_LEVELS
 };

 enum LevelRoundingMode
 {
 ROUND_DOWN,
 ROUND_UP
 };

 class TileDescription
 {
 public:

 unsigned int xSize; // size of a tile in the x dimension
 unsigned int ySize; // size of a tile in the y dimension
 LevelMode mode;
 LevelRoundingMode roundingMode;

 ... // (methods omitted)
 };

14

5 Using the RGBA­only Interface for Tiled Files

5.1 Writing a Tiled RGBA Image File with One Resolution Level

Writing a tiled RGBA image with a single level is easy:

 void
 writeTiledRgbaONE1 (const char fileName[],
 const Rgba *pixels,
 int width, int height,
 int tileWidth, int tileHeight)
 {
 TiledRgbaOutputFile out (fileName,
 width, height, // image size
 tileWidth, tileHeight, // tile size
 ONE_LEVEL, // level mode
 ROUND_DOWN, // rounding mode
 WRITE_RGBA); // channels in file // 1

 out.setFrameBuffer (pixels, 1, width); // 2

 for (int tileY = 0; tileY < out.numYTiles (); ++tileY) // 3
 for (int tileX = 0; tileX < out.numXTiles (); ++tileX) // 4
 out.writeTile (tileX, tileY); // 5
 }

Opening the file and defining the pixel data layout in memory are done in almost the same way as for scan-
line-based files:

Construction of the TiledRgbaOutputFile object, in line 1, creates an OpenEXR header, sets the
header's attributes, opens the file with the specified name, and stores the header in the file. The header's
display window and data window are both set to (0, 0) - (width-1, height-1). The size of each
tile in the file will be tileWidth by tileHeight pixels. The channel list contains four channels, R, G, B,
and A, of type HALF.

Line 2 specifies how the pixel data are laid out in memory. The arithmetic involved in calculating the
memory address of a specific pixel is the same as for the scan-line-based interface (see section 2.1). We
assume that the pixels pointer points to an array of width*height pixels, which contains the entire
image.

Lines 3 and 4 loop over all tiles within the image. The TiledRgbaOutputFile's numXTiles() method
returns the number of tiles in the x direction, and similarly, the numYTiles() method returns the number
of tiles in the y dimension. During these loops, line 5 writes out each tile in the image.

This simple method works well when enough memory is available to allocate a frame buffer for the entire
image. When allocating a frame buffer for the whole image is not desirable, for example because the image
is very large, a smaller frame buffer can be used. Even a frame buffer that can hold only a single tile is
sufficient, as demonstrated in the following example:

 void
 writeTiledRgbaONE2 (const char fileName[],
 int width, int height,
 int tileWidth, int tileHeight)
 {
 TiledRgbaOutputFile out (fileName,
 width, height, // image size
 tileWidth, tileHeight, // tile size
 ONE_LEVEL, // level mode
 ROUND_DOWN, // rounding mode
 WRITE_RGBA); // channels in file // 1

 Array2D<Rgba> pixels (tileHeight, tileWidth); // 2

 for (int tileY = 0; tileY < out.numYTiles (); ++tileY) // 3
 {
 for (int tileX = 0; tileX < out.numXTiles (); ++tileX) // 4
 {
 Box2i range = out.dataWindowForTile (tileX, tileY); // 5

15

 generatePixels (pixels, width, height, range); // 6

 out.setFrameBuffer (&pixels[-range.min.y][-range.min.x],
 1, // xStride
 tileWidth); // yStride // 7

 out.writeTile (tileX, tileY); // 8
 }
 }
 }

In line 2 we allocate a pixels array with tileWidth*tileHeight elements, which is just enough for
one tile. Line 5 computes the data window range for each tile, that is, the set of pixel coordinates covered
by the tile. The generatePixels() function, in line 6, fills the pixels array with one tile's worth of
image data. The same pixels array is reused for all tiles. We must call setFrameBuffer(), in line 7,
before writing each tile so that the pixels in the array are accessed properly in the writeTile() call in
line 8. Again, the address arithmetic to access the pixels is the same as for scan-line-based files. The values
for the base, xStride, and yStride arguments to the setFrameBuffer() call must be chosen so that
evaluating the expression

 base + x * xStride + y * yStride

produces the address of the pixel with coordinates (x,y).

5.2 Writing a Tiled RGBA Image File with Mipmap Levels

In order to store a multiresolution image in a file, we can allocate a frame buffer large enough for the
highest-resolution level, (0,0), and reuse it for all levels:

 void
 writeTiledRgbaMIP1 (const char fileName[],
 int width, int height,
 int tileWidth, int tileHeight)
 {
 TiledRgbaOutputFile out (fileName,
 width, height,
 tileWidth, tileHeight,
 MIPMAP_LEVELS,
 ROUND_DOWN,
 WRITE_RGBA); // 1

 Array2D<Rgba> pixels (height, width); // 2
 out.setFrameBuffer (&pixels[0][0], 1, width); // 3

 for (int level = 0; level < out.numLevels (); ++level) // 4
 {
 generatePixels (pixels, width, height, level); // 5

 for (int tileY = 0; tileY < out.numYTiles (level); ++tileY) // 6
 for (int tileX = 0; tileX < out.numXTiles (level); ++tileX) // 7
 out.writeTile (tileX, tileY, level); // 8
 }
 }

The main difference here is the use of MIPMAP_LEVELS in line 1 for the TiledRgbaOutputFile
constructor. This signifies that the file will contain multiple levels, each level being a factor of 2 smaller in
both dimensions than the previous level. Mipmap images contain n levels, with level numbers

 (0,0), (1,1), ... (n-1,n-1),

where

 n = floor (log (max (width, height)) / log (2)) + 1

if the level size rounding mode is ROUND_DOWN, or

 n = ceil (log (max (width, height)) / log (2)) + 1

16

if the level size rounding mode is ROUND_UP. Note that even though level numbers are pairs of integers,
(lx,ly), only levels where lx equals ly are used in MIPMAP_LEVELS files.

Line 2 allocates a pixels array with width by height pixels, big enough to hold the highest-resolution
level.

In addition to looping over all tiles (lines 6 and 7), we must loop over all levels in the image (line 4).
numLevels() returns the number of levels, n, in our mipmapped image. Since the tile sizes remain the
same in all levels, the number of tiles in both dimensions varies between levels. numXTiles() and
numYTiles() take a level number as an optional argument, and return the number of tiles in the x or y
direction for the corresponding level. Line 5 fills the pixels array with appropriate data for each level.

As with ONE_LEVEL images, we can choose to only allocate a frame buffer for a single tile and reuse it for
all tiles in the image:

 void
 writeTiledRgbaMIP2 (const char fileName[],
 int width, int height,
 int tileWidth, int tileHeight)
 {
 TiledRgbaOutputFile out (fileName,
 width, height,
 tileWidth, tileHeight,
 MIPMAP_LEVELS,
 ROUND_DOWN,
 WRITE_RGBA);

 Array2D<Rgba> pixels (tileHeight, tileWidth);

 for (int level = 0; level < out.numLevels (); ++level)
 {
 for (int tileY = 0; tileY < out.numYTiles (level); ++tileY)
 {
 for (int tileX = 0; tileX < out.numXTiles (level); ++tileX)
 {
 Box2i range = out.dataWindowForTile (tileX, tileY, level);

 generatePixels (pixels, width, height, range, level);

 out.setFrameBuffer (&pixels[-range.min.y][-range.min.x],
 1, // xStride
 tileWidth); // yStride

 out.writeTile (tileX, tileY, level);
 }
 }
 }
 }

The structure of this code is the same as for writing a ONE_LEVEL image using a tile-sized frame buffer,
but we have to loop over more tiles. Also, dataWindowForTile() takes an additional level argument to
determine the pixel range for the tile at the specified level.

5.3 Writing a Tiled RGBA Image File with Ripmap Levels

The ripmap level mode allows for storing all combinations of reducing the resolution of the image by
powers of two independently in both dimensions. Ripmap files contains nx*ny levels, with level numbers:

 (0, 0), (1, 0), ... (nx­1, 0),
 (0, 1), (1, 1), ... (nx­1, 1),
 ...
 (0,ny­1), (1,ny­1), ... (nx­1,ny­1)

where

 nx = floor (log (width) / log (2)) + 1
 ny = floor (log (height) / log (2)) + 1

17

if the level size rounding mode is ROUND_DOWN, or

 nx = ceil (log (width) / log (2)) + 1
 ny = ceil (log (height) / log (2)) + 1

if the level size rounding mode is ROUND_UP.

With a frame buffer that is large enough to hold level (0,0), we can write a ripmap file like this:

 void
 writeTiledRgbaRIP1 (const char fileName[],
 int width, int height,
 int tileWidth, int tileHeight)
 {
 TiledRgbaOutputFile out (fileName,
 width, height,
 tileWidth, tileHeight,
 RIPMAP_LEVELS,
 ROUND_DOWN,
 WRITE_RGBA);

 Array2D<Rgba> pixels (height, width);
 out.setFrameBuffer (&pixels[0][0], 1, width);

 for (int yLevel = 0; yLevel < out.numYLevels (); ++yLevel)
 {
 for (int xLevel = 0; xLevel < out.numXLevels (); ++xLevel)
 {
 generatePixels (pixels, width, height, xLevel, yLevel);

 for (int tileY = 0; tileY < out.numYTiles (yLevel); ++tileY)
 for (int tileX = 0; tileX < out.numXTiles (xLevel); ++tileX)
 out.writeTile (tileX, tileY, xLevel, yLevel);
 }
 }
 }

As for ONE_LEVEL and MIPMAP_LEVELS files, the frame buffer doesn't have to be large enough to hold a
whole level. Any frame buffer big enough to hold at least a single tile will work.

5.4 Reading a Tiled RGBA Image File

Reading a tiled RGBA image file is done similarly to writing one:

 void
 readTiledRgba1 (const char fileName[],
 Array2D<Rgba> &pixels,
 int &width,
 int &height)
 {
 TiledRgbaInputFile in (fileName);
 Box2i dw = in.dataWindow();

 width = dw.max.x - dw.min.x + 1;
 height = dw.max.y - dw.min.y + 1;
 int dx = dw.min.x;
 int dy = dw.min.y;

 pixels.resizeErase (height, width);

 in.setFrameBuffer (&pixels[-dy][-dx], 1, width);

 for (int tileY = 0; tileY < in.numYTiles(); ++tileY)
 for (int tileX = 0; tileX < in.numXTiles(); ++tileX)
 in.readTile (tileX, tileY);
 }

First we need to create a TiledRgbaInputFile object for the given file name. We then retrieve
information about the data window in order to create an appropriately sized frame buffer, in this case large
enough to hold the whole image at level (0,0). After we set the frame buffer, we iterate over the tiles we
are interested in, and read them from the file.

18

This example only reads the highest-resolution level of the image. It can be extended to read all levels, for
multiresolution images, by also iterating over all levels within the image, analogous to the examples in
sections section 5.2 and 5.3.

19

6 Using the General Interface for Tiled Files

6.1 Writing a Tiled Image File

This example is a variation of the one in section 3.1, on page 9. We are writing a ONE_LEVEL image file
with two channels, G, and Z, of type HALF, and FLOAT respectively, but here the file is tiled instead of
scan-line-based:

 void
 writeTiled1 (const char fileName[],
 Array2D<GZ> &pixels,
 int width, int height,
 int tileWidth, int tileHeight)
 {
 Header header (width, height); // 1
 header.channels().insert ("G", Channel (HALF)); // 2
 header.channels().insert ("Z", Channel (FLOAT)); // 3

 header.setTileDescription
 (TileDescription (tileWidth, tileHeight, ONE_LEVEL)); // 4

 TiledOutputFile out (fileName, header); // 5

 FrameBuffer frameBuffer; // 6

 frameBuffer.insert ("G", // name // 7
 Slice (HALF, // type // 8
 (char *) &pixels[0][0].g, // base // 9
 sizeof (pixels[0][0]) * 1, // xStride // 10
 sizeof (pixels[0][0]) * width)); // yStride // 11

 frameBuffer.insert ("Z", // name // 12
 Slice (FLOAT, // type // 13
 (char *) &pixels[0][0].z, // base // 14
 sizeof (pixels[0][0]) * 1, // xStride // 15
 sizeof (pixels[0][0]) * width)); // yStride // 16

 out.setFrameBuffer (frameBuffer); // 17

 for (int tileY = 0; tileY < out.numYTiles (); ++tileY) // 18
 for (int tileX = 0; tileX < out.numXTiles (); ++tileX) // 19
 out.writeTile (tileX, tileY); // 20
 }

As one would expect, the code here is very similar to the code in section 3.1. The file's header is created in
line 1, while lines 2 and 3 specify the names and types of the image channels that will be stored in the file.
An important addition is line 4, where we define the size of the tiles and the level mode. In this example we
use ONE_LEVEL for simplicity. Line 5 opens the file and writes the header. Lines 6 through 17 tell the
TiledOutputFile object the location and layout of the pixel data for each channel. Finally, lines 18
through 20 loop over all tiles in the image and write out each tile.

6.2 Reading a Tiled Image File

Reading a tiled file with the general interface is virtually identical to reading a scan-line-based file, as
shown in section 3.4, on page 12; only the last three lines are different. Instead of reading all scan lines at
once with a single function call, here we must iterate over all tiles we want to read.

 void
 readTiled1 (const char fileName[],
 Array2D<GZ> &pixels,
 int &width, int &height)
 {
 TiledInputFile in (fileName);

 Box2i dw = in.header().dataWindow();
 width = dw.max.x - dw.min.x + 1;
 height = dw.max.y - dw.min.y + 1;
 int dx = dw.min.x;

20

 int dy = dw.min.y;

 pixels.resizeErase (height, width);

 FrameBuffer frameBuffer;

 frameBuffer.insert ("G",
 Slice (HALF,
 (char *) &pixels[-dy][-dx].g,
 sizeof (pixels[0][0]) * 1,
 sizeof (pixels[0][0]) * width));

 frameBuffer.insert ("Z",
 Slice (FLOAT,
 (char *) &pixels[-dy][-dx].z,
 sizeof (pixels[0][0]) * 1,
 sizeof (pixels[0][0]) * width));

 in.setFrameBuffer (frameBuffer);

 for (int tileY = 0; tileY < in.numYTiles(); ++tileY)
 for (int tileX = 0; tileX < in.numXTiles(); ++tileX)
 in.readTile (tileX, tileY);
 }

In this example we assume that the file we want to read contains two channels, G and Z, of type HALF and
FLOAT respectively. If the file contains other channels, we ignore them. We only read the highest-
resolution level of the image. If the input file contains more levels (MIPMAP_LEVELS or MIPMAP_LEVELS),
we can access the extra levels by calling a four-argument version of the readTile() function:

 in.readTile (tileX, tileY, levelX, levelY);

21

7 Miscellaneous

7.1 Is this an OpenEXR File?

Sometimes we want to test quickly if a given file is an OpenEXR file. This can be done by looking at the
beginning of the file: The first four bytes of every OpenEXR file contain the 32-bit integer "magic
number" 20000630 in little-endian byte order. After reading a file's first four bytes via any of the operating
system's standard file I/O mechanisms, we can compare them with the magic number, either by calling
function isImfMagic() or by explicitly testing if the bytes contain the values 0x76, 0x2f, 0x31, and
0x01.

Given a file name, the following function returns true if the corresponding file exists, is readable, and
contains an OpenEXR image:

 bool
 isOpenExrFile (const char fileName[])
 {
 std::ifstream f (fileName, std::ios_base::binary);

 char bytes[4];
 f.read (bytes, sizeof (bytes));

 return !!f && Imf::isImfMagic (bytes);
 }

7.2 Custom Low­Level File I/O

In all of the previous file reading and writing examples, we were given a file name, and we relied on the
constructors for our input file or output file objects to open the file. In some contexts, for example in a
plugin for an existing application program, we may have to read from or write to a file that has already
been opened. The representation of the open file as a C or C++ data type depends on the application
program and on the operating system.

At its lowest level, the IlmImf library performs file I/O via objects of type IStream and OStream.
IStream and OStream are abstract base classes. The IlmImf library contains two derived classes,
StdIFStream and StdOFStream, that implement reading from std::ifstream and writing to
std::ofstream objects. An application program can implement alternative file I/O mechanisms by
deriving its own classes from Istream and Ostream. This way, OpenEXR images can be stored in
arbitrary file-like objects, as long as it is possible to support read, write, seek and tell operations with
semantics similar to the corresponding std::ifstream and std::ofstream methods.

For example, assume that we want to read an OpenEXR image from a C stdio file (of type FILE *) that
has already been opened. To do this, we derive a new class, C_IStream, from IStream. The declaration
of class IStream looks like this:

 class IStream
 {
 public:

 virtual ~IStream ();

 virtual bool read (char c[], int n) = 0;
 virtual Int64 tellg () = 0;
 virtual void seekg (Int64 pos) = 0;
 virtual void clear ();
 const char * fileName () const;

 protected:

 IStream (const char fileName[]);

 private:

 ...

22

 };

Our derived class needs a public constructor, and it must override four methods:

 class C_IStream: public IStream
 {
 public:

 C_IStream (FILE *file, const char fileName[]):
 IStream (fileName), _file (file) {}

 virtual bool read (char c[], int n);
 virtual Int64 tellg ();
 virtual void seekg (Int64 pos);
 virtual void clear ();

 private:

 FILE * _file;
 };

read(c,n) reads n bytes from the file, and stores them in array c. If reading hits the end of the file before
n bytes have been read, or if an I/O error occurs, read(c,n) throws an exception. If read(c,n) hits the
end of the file after reading n bytes, it returns false, otherwise it returns true:

 bool
 C_IStream::read (char c[], int n)
 {
 if (n != fread (c, 1, n, _file))
 {
 // fread() failed, but the return value does not distinguish
 // between I/O errors and end of file, so we call ferror() to
 // determine what happened.

 if (ferror (_file))
 Iex::throwErrnoExc();
 else
 throw Iex::InputExc ("Unexpected end of file.");
 }

 return feof (_file);
 }

tellg() returns the current reading position, in bytes, from the beginning of the file. The next call to
read() will begin reading at the indicated position:

 Int64
 C_IStream::tellg ()
 {
 return ftell (_file);
 }

seekg(pos) sets the current reading position to pos bytes from the beginning of the file:

 void
 C_IStream::seekg (Int64 pos)
 {
 clearerr (_file);
 fseek (_file, pos, SEEK_SET);
 }

clear() clears any error flags that may be set on the file after a read() or seekg() operation has failed:

 void
 C_IStream::clear ()
 {
 clearerr (_file);
 }

In order to read an RGBA image from an open C stdio file, we first make a C_IStream object. Then we
create an RgbaInputFile, passing the C_IStream instead of a file name to the constructor. After that, we
read the image as usual (see section 2.4, Reading an RGBA Image File, on page 5):

23

 void
 readRgbaFILE (FILE *cfile,
 const char fileName[],
 Array2D<Rgba> &pixels,
 int &width,
 int &height)
 {
 C_IStream istr (cfile, fileName);
 RgbaInputFile file (istr);

 Box2i dw = file.dataWindow();
 width = dw.max.x ­ dw.min.x + 1;
 height = dw.max.y ­ dw.min.y + 1;
 pixels.resizeErase (height, width);
 file.setFrameBuffer (&pixels[0][0] ­ dw.min.x ­ dw.min.y * width, 1, width);
 file.readPixels (dw.min.y, dw.max.y);
 }

7.3 Preview Images

Graphical user interfaces for selecting image files often represent files as small preview or thumbnail
images. In order to make loading and displaying the preview images fast, OpenEXR files support storing
preview images in the file headers.

A preview image is an attribute whose value is of type PreviewImage. A PreviewImage object is an
array of pixels of type PreviewRgba. A pixel has four components, r, g, b and a, of type unsigned
char, where r, g and b are the pixel's red, green and blue components, encoded with a gamma of 2.2. a is
the pixel's alpha channel; r, g and b should be premultiplied by a. On a typical display with 8-bits per
component, the preview image can be shown by simply loading the r, g and b components into the
display's frame buffer. (No gamma correction or tone mapping is required.)

The code fragment below shows how to test if an OpenEXR file has a preview image, and how to access a
preview image's pixels:

 RgbaInputFile file (fileName);

 if (file.header().hasPreviewImage())
 {
 const PreviewImage &preview = file.header().previewImage();

 for (int y = 0; y < preview.height(); ++y)
 for (int x = 0; x < preview.width(); ++x)
 {
 const PreviewRgba &pixel = preview.pixel (x, y);
 ...
 }
 }

Writing an OpenEXR file with a preview image is shown in the following example. Since the preview
image is an attribute in the file's header, it is entirely separate from the main image. Here the preview
image is a smaller version of the main image, but this is not required; in some cases storing an easily
recognizable icon may be more appropriate. This example uses the RGBA-only interface to write a scan-
line based file, but preview images are also supported for files that are written using the general interface,
and for tiled files.

 void
 writeRgbaWithPreview1 (const char fileName[],
 const Array2D<Rgba> &pixels,
 int width,
 int height)
 {
 Array2D <PreviewRgba> previewPixels; // 1
 int previewWidth; // 2
 int previewHeight; // 3

 makePreviewImage (pixels, width, height, // 4
 previewPixels, previewWidth, previewHeight);

24

 Header header (width, height); // 5

 header.setPreviewImage // 6
 (PreviewImage (previewWidth, previewHeight, &previewPixels[0][0]));

 RgbaOutputFile file (fileName, header, WRITE_RGBA); // 7
 file.setFrameBuffer (&pixels[0][0], 1, width); // 8
 file.writePixels (height); // 9
 }

Lines 1 through 4 generate the preview image. Line 5 creates a header for the image file. Line 6 converts
the preview image into a PreviewImage attribute, and adds the attribute to the header. Lines 7 through 9
store the header (with the preview image) and the main image in a file.

Function makePreviewImage(), called in line 4, generates the preview image by scaling the main image
down to one eighth of its original width and height:

 void
 makePreviewImage (const Array2D<Rgba> &pixels,
 int width,
 int height,
 Array2D<PreviewRgba> &previewPixels,
 int &previewWidth,
 int &previewHeight)
 {
 const int N = 8;

 previewWidth = width / N;
 previewHeight = height / N;
 previewPixels.resizeErase (previewHeight, previewWidth);

 for (int y = 0; y < previewHeight; ++y)
 {
 for (int x = 0; x < previewWidth; ++x)
 {
 const Rgba &inPixel = pixels[y * N][x * N];
 PreviewRgba &outPixel = previewPixels[y][x];

 outPixel.r = gamma (inPixel.r);
 outPixel.g = gamma (inPixel.g);
 outPixel.b = gamma (inPixel.b);
 outPixel.a = int (clamp (inPixel.a * 255.f, 0.f, 255.f) + 0.5f);
 }
 }
 }

To make this example easier to read, scaling the image is done by just sampling every eighth pixel of every
eighth scan line. This can lead to aliasing artifacts in the preview image; for a higher-quality preview
image, the main image should be lowpass-filtered before it is subsampled.

Function makePreviewImage() calls gamma() to convert the floating-point red, green, and blue
components of the sampled main image pixels to unsigned char values. gamma() is a simplified version
of what the exrdisplay program does in order to show an OpenEXR image's floating-point pixels on the
screen (for details, see exrdisplay's source code):

 unsigned char
 gamma (float x)
 {
 x = pow (5.5555f * max (0.f, x), 0.4545f) * 84.66f;
 return (unsigned char) clamp (x, 0.f, 255.f);
 }

makePreviewImage() converts the pixels' alpha component to unsigned char by by linearly mapping the
range [0.0, 1.0] to [0, 255].

Some programs write image files one scan line or tile at a time, while the image is being generated. Since
the image does not yet exist when the file is opened for writing, it is not possible to store a preview image
in the file's header at this time (unless the preview image is an icon that has nothing to do with the main
image). However, it is possible to store a blank preview image in the header when the file is opened. The

25

preview image can then be updated as the pixels become available. This is demonstrated in the following
example:

 void
 writeRgbaWithPreview2 (const char fileName[],
 int width,
 int height)
 {
 Array <Rgba> pixels (width);

 const int N = 8;

 int previewWidth = width / N;
 int previewHeight = height / N;
 Array2D <PreviewRgba> previewPixels (previewHeight, previewWidth);

 Header header (width, height);
 header.setPreviewImage (PreviewImage (previewWidth, previewHeight));

 RgbaOutputFile file (fileName, header, WRITE_RGBA);
 file.setFrameBuffer (pixels, 1, 0);

 for (int y = 0; y < height; ++y)
 {
 generatePixels (pixels, width, height, y);
 file.writePixels (1);

 if (y % N == 0)
 {
 for (int x = 0; x < width; x += N)
 {
 const Rgba &inPixel = pixels[x];
 PreviewRgba &outPixel = previewPixels[y / N][x / N];

 outPixel.r = gamma (inPixel.r);
 outPixel.g = gamma (inPixel.g);
 outPixel.b = gamma (inPixel.b);
 outPixel.a = int (clamp (inPixel.a * 255.f, 0.f, 255.f) + 0.5f);
 }
 }
 }

 file.updatePreviewImage (&previewPixels[0][0]);
 }

7.4 Environment Maps

An environment map is an image that represents an omnidirectional view of a three-dimensional scene as
seen from a particular 3D location. Every pixel in the image corresponds to a 3D direction, and the data
stored in the pixel represent the amount of light arriving from this direction. In 3D rendering applications,
environment maps are often used for image-based lighting techniques that appoximate how objects are
illuminated by their surroundings. Environment maps with enough dynamic range to represent even the
brightest light sources in the environment are sometimes called "light probe images."

In an OpenEXR file, an environment map is stored as a rectangular pixel array, just like any other image,
but an attribute in the file header indicates that the image is an environment map. The attribute's value,
which is of type Envmap, specifies the relation between 2D pixel locations and 3D directions. Envmap is an
enumeration type. Two values are possible:

ENVMAP_LATLONG

Latitude-Longitude Map: The environment is projected onto the image using polar coordinates (latitude
and longitude). A pixel's x coordinate corresponds to its longitude, and the y coordinate corresponds to
its latitude. The pixel in the upper left corner of the data window has latitude +/2 and longitude +; the
pixel in the lower right corner has latitude -/2 and longitude -.

26

In 3D space, latitudes -/2 and +/2 correspond to the negative and positive y direction. Latitude 0,
longitude 0 points in the positive z direction; latitude 0, longitude /2 points in the positive x direction.

For a latitude-longitude map, the size of the data window should be 2×N by N pixels (width by height),
where N can be any integer greater than 0.

ENVMAP_CUBE

Cube Map: The environment is projected onto the six faces of an axis-aligned cube. The cube's faces
are then arranged in a 2D image as shown below.

For a cube map, the size of the data window should be N by 6×N pixels (width by height), where N can
be any integer greater than 0.

27

The following code fragment tests if an OpenEXR file contains an environment map, and if it does, which
kind:

 RgbaInputFile file (fileName);

 if (hasEnvmap (file.header()))
 {
 Envmap type = envmap (file.header());
 ...
 }

For each kind of environment map, the IlmImf library provides a set of routines that convert from 3D
directions to 2D floating-point pixel locations and back. Those routines are useful in application programs
that create environment maps and in programs that perform map lookups. For details, see header file
ImfEnvmap.h.

7.5 Thread­Safety

Except for inititialization, the IlmImf library is thread-safe in the following sense: In a multithreaded
application program, multiple threads can concurrently read and write distinct OpenEXR files, but
multithreaded reading or writing of a single file requires mutual exclusion. In other words, each thread can
independently create, use and destroy its own input and output file objects, but if multiple threads share a
single input or output file object, then the application program must ensure mutual exclusion between the
threads during accesses to the object.

Before any OpenEXR files can be read or written, the IlmImf library must initialize some internal data
structures that are shared between threads. In order to ensure that initialization happens in a thread-safe
manner, a multithreaded application program must call the Imf::staticInitialize() function before
accessing any other functions or classes in the IlmImf library. In a single-threaded program initialization
happens automatically; it is not necessary to call Imf::staticInitialize().

28

