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This  document  shows how to  write  C++ code  that  reads  and  writes  OpenEXR image  files.  The  text
assumes that the reader is familiar with OpenEXR terms like "channel", "attribute", or "data window". For
an  explanation  of  those terms  see  the Technical  Introduction  to  OpenEXR document.  The  OpenEXR
source distribution contains a subdirectory, IlmImfExamples, with most of the code examples below. A
Makefile is also provided, so that the examples can easily be compiled and run. 
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1 Scan­line­based and Tiled OpenEXR files

In an OpenEXR file, pixel data can be stored either as scan lines or as tiles. Files that store pixels as tiles
can also store multiresolution images. For each of the two storage formats (scan line or tile-based), the
IlmImf library supports two reading and writing interfaces: the first, fully general, interface allows access
to arbitrary channels, and supports many different in-memory pixel data layouts. The second interface is
easier to use, but limits access to 16-bit (HALF) RGBA (red, green, blue, alpha) channels, and provides
fewer options for laying out pixels in memory. 

The interfaces for reading and writing OpenEXR files are implemented in the following eight C++ classes: 

tiles scan lines scan lines and tiles

arbitrary channels TiledInputFile InputFile

TiledOutputFile OutputFile

RGBA only TiledRgbaInputFile RgbaInputFile

TiledRgbaOutputFile RgbaOutputFile

The classes for reading scan-line-based images (InputFile and  RgbaInputFile) can also be used to
read tiled image files. This way, programs that do not need support for tiled or multiresolution images can
always use the rather straightforward scan-line interfaces, without worrying about complications related to
tiling  and  multiple  resolutions.  When a  multiresolution  file  is  read  via  a  scan-line  interface,  only  the
highest-resolution version of the image is accessible. 
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2 Using the RGBA­only Interface for Scan­line­based Files

2.1 Writing an RGBA Image File

Writing a simple RGBA image file is fairly straightforward: 

    void
    writeRgba1 (const char fileName[],
                const Rgba *pixels,
                int width,
                int height)
    {
        RgbaOutputFile file (fileName, width, height, WRITE_RGBA);      // 1
        file.setFrameBuffer (pixels, 1, width);                         // 2
        file.writePixels (height);                                      // 3
    }

Construction  of  an  RgbaOutputFile  object,  in  line  1,  creates  an  OpenEXR header,  sets  the  header's
attributes, opens the file with the specified name, and stores the header in the file. The header's display
window and data window are both set to (0, 0) - (width-1, height-1). The channel list contains
four channels, R, G, B, and A, of type HALF. 

Line 2 specifies how the pixel data are laid out in memory. In our example, the pixels pointer is assumed
to point to the beginning of an array of width*height pixels. The pixels are represented as Rgba structs,
which are defined like this: 

    struct Rgba
    {
        half r;    // red
        half g;    // green
        half b;    // blue
        half a;    // alpha (opacity)
    };

The elements of our array are arranged so that the pixels of each scan line are contiguous in memory.
The setFrameBuffer() function takes three arguments,  base,  xStride,  and  ystride.  To find the
address of pixel (x,y), the RgbaOutputFile object computes 

    base + x * xStride + y * yStride.

In this case, base, xStride and yStride are set to pixels, 1, and width, respectively, indicating that
pixel (x,y) can be found at memory address 

    pixels + 1 * x + width * y.

The call to writePixels(), in line 3, copies the image's pixels from memory to the file. The argument to
writePixels(), height, specifies how many scan lines worth of data are copied. 

Finally,  returning  from function  writeRgba1() destroys  the  local  RgbaOutputFile object,  thereby
closing the file. 

Why do we have to tell the writePixels() function how many scan lines we want to write? Shouldn't
the RgbaOutputFile object be able to derive the number of scan lines from the data window? The IlmImf
library doesn't require writing all scan lines with a single writePixels() call. Many programs want to
write scan lines individually, or in small blocks. For example, rendering computer-generated images can
take a significant amount of time, and many rendering programs want to store each scan line in the image
file as soon as all of the pixels for that scan line are available. This way, users can look at a partial image
before rendering is finished. The IlmImf library allows writing the scan lines in top-to-bottom or bottom-
to-top  direction.  The  direction  is  defined  by  the  file  header's  line  order  attribute  (INCREASING_Y or
DECREASING_Y). By default, scan lines are written top to bottom (INCREASING_Y). 

You may have noticed that in the example above, there are no explicit checks to verify that writing the file
actually succeeded. If the IlmImf library detects an error, it throws a C++ exception instead of returning a
C-style error code. With exceptions, error handling tends to be easier to get right than with error return
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values.  For  instance,  a  program  that  calls  our  writeRgba1() function  can  handle  all  possible  error
conditions with a single try/catch block: 

    try
    {
        writeRgba1 (fileName, pixels, width, height);
    }
    catch (const std::exception &exc)
    {
        std::cerr << exc.what() << std::endl;
    }

2.2 Writing a Cropped Image

Now we are going to store a cropped image in a file. For this example, we assume that we have a frame
buffer that is large enough to hold an image with  width by  height pixels, but only part of the frame
buffer contains valid data. In the file's header, the size of the whole image is indicated by the display
window,  (0, 0) - (width-1, height-1), and the data window specifies the region for which valid
pixel data exist. Only the pixels in the data window are stored in the file. 

    void
    writeRgba2 (const char fileName[],
                const Rgba *pixels,
                int width,
                int height,
                const Box2i &dataWindow)
    {
        Box2i displayWindow (V2i (0, 0), V2i (width - 1, height - 1));
        RgbaOutputFile file (fileName, displayWindow, dataWindow, WRITE_RGBA);
        file.setFrameBuffer (pixels, 1, width);
        file.writePixels (dataWindow.max.y - dataWindow.min.y + 1);
    }

The code above is similar to that in section 2.1, where the whole image was stored in the file. Two things
are different, however: When the  RgbaOutputFile object is created, the data window and the display
window are explicitly specified rather than being derived from the image's width and height. The number
of scan lines stored in the file by writePixels() is equal to the height of the data window instead of the
height of the whole image. Since we are using the default  INCREASING_Y direction for storing the scan
lines  in  the  file,  writePixels() starts  at  the  top  of  the  data  window,  at  y  coordinate
dataWindow.min.y, and proceeds toward the bottom, at y coordinate dataWindow.max.y. 

Even though we are storing only part of the image in the file, the frame buffer is still large enough to hold
the whole image. In order to save memory,  a smaller frame buffer could have been allocated, just big
enough to hold the contents of the data window. Assuming that the pixels were still stored in contiguous
scan lines, with the  pixels pointer pointing to the pixel at the upper left corner of the data window, at
coordinates  (dataWindow.min.x, dataWindow.min.y),  the  arguments  to  the  setFrameBuffer()
call would have to be to be changed as follows: 

    int dwWidth = dataWindow.max.x - dataWindow.min.x + 1;

    file.setFrameBuffer
        (pixels - dataWindow.min.x - dataWindow.min.y * dwWidth, 1, dwWidth);

With these settings, evaluation of 

    base + x * xStride + y * yStride

for pixel (dataWindow.min.x, dataWindow.min.y) produces 
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      pixels ­ dataWindow.min.x ­ dataWindow.min.y * dwWidth
        + dataWindow.min.x * 1
        + dataWindow.min.y * dwWidth

    = pixels ­
        ­ dataWindow.min.x
        ­ dataWindow.min.y * (dataWindow.max.x ­ dataWindow.min.x + 1)
        + dataWindow.min.x
        + dataWindow.min.y * (dataWindow.max.x ­ dataWindow.min.x + 1)

    = pixels,

which is exactly what we want. Similarly, calculating the addresses for pixels (dataWindow.min.x+1,
dataWindow.min.y) and  (dataWindow.min.x,  dataWindow.min.y+1) yields  pixels+1 and
pixels+dwWidth, respectively. 

2.3 Storing Custom Attributes

We will now to store an image in a file, and we will add two extra attributes  to the image file header: a
string, called "comments", and a 4×4 matrix, called "cameraTransform". 

    void
    writeRgba3 (const char fileName[],
                const Rgba *pixels,
                int width,
                int height,
                const char comments[],
                const M44f &cameraTransform)
    {
        Header header (width, height);
        header.insert ("comments", StringAttribute (comments));
        header.insert ("cameraTransform", M44fAttribute (cameraTransform));

        RgbaOutputFile file (fileName, header, WRITE_RGBA);
        file.setFrameBuffer (pixels, 1, width);
        file.writePixels (height);
    }

The  setFrameBuffer() and  writePixels() calls  are  the  same  as  in  the  previous  examples,  but
construction  of  the  RgbaOutputFile object  is  different.  The  constructors  in  the  previous  examples
automatically created a header on the fly, and immediately stored it in the file. Here we explicitly create a
header  and  add  our  own  attributes  to  it.  When  we  create  the  RgbaOutputFile object,  we  tell  the
constructor to use our header instead of creating its own. 

In order  to make it easier to exchange data between programs written by different people,  the IlmImf
library defines a set of standard attributes for commonly used data, such as colorimetric information, time
and place where an image was recorded, or the owner of an image file's content. For the current list of
standard attributes, see the header file  ImfStandardAttributes.h. The list is expected to grow over
time as OpenEXR users identify new types of data they would like to represent in a standard format. If you
need to store some piece of information in an OpenEXR file header, it is probably a good idea to check if a
suitable standard attribute exists, before you define a new attribute. 

2.4 Reading an RGBA Image File

Reading an RGBA image is almost as easy as writing one: 

    void
    readRgba1 (const char fileName[],
               Array2D<Rgba> &pixels,
               int &width,
               int &height)
    {
        RgbaInputFile file (fileName);
        Box2i dw = file.dataWindow();

        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;
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        pixels.resizeErase (height, width);

        file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width, 1, width);
        file.readPixels (dw.min.y, dw.max.y);
    }

Constructing an RgbaInputFile object, passing the name of the file to the constructor, opens the file and
reads the file's header. 

After asking the RgbaInputFile object for the file's data window, we allocate a buffer for the pixels. For
convenience, we use the IlmImf library's  Array2D class template (the call to  resizeErase() does the
actual allocation). The number of scan lines in the buffer is equal to the height of the data window, and the
number of pixels per scan line is equal to the width of the data window. The pixels are represented as Rgba
structs. 

Note that we ignore the display window in this example; in a program that wanted to place the pixels in the
data window correctly in an overall image, the display window would have to be taken into account. 

Just as for  writing a file, calling  setFrameBuffer() tells the  RgbaInputFile object  how to access
individual pixels in the buffer (see also section 2.2, Writing a Cropped Image, on page 4). 

Calling readPixels() copies the pixel data from the file into the buffer. If one or more of the R, G, B,
and A channels are missing in the file, the corresponding field in the pixels is filled with an appropriate
default value. The default value for R, G and B is 0.0, or black; the default value for A is 1.0, or opaque. 

Finally, returning from function readRgba1() destroys the local RgbaInputFile object, thereby closing
the file. 

Unlike  the  RgbaOutputFile's  writePixels() method,  readPixels() has  two arguments.  Calling
readPixels(y1,y2) copies the pixels for all scan lines with y coordinates from y1 to y2 into the frame
buffer. This allows access to the the scan lines in any order. The image can be read all at once, one scan
line at a time, or in small blocks of a few scan lines. It is also possible to skip parts of the image. 

Note that even though random access is possible, reading the scan lines in the same order as they were
written,  is  more efficient.  Random access to the file  requires seek operations,  which tend to  be slow.
Calling the RgbaInputFile's lineOrder() method returns the order in which the scan lines in the file were
written (INCREASING_Y or DECREASING_Y). If successive calls to readPixels() access the scan lines in
the right order, the IlmImf library reads the file as fast as possible, without seek operations. 

2.5 Reading an RGBA Image File in Chunks

The following  shows how to read  an  RGBA image  in  blocks of  a  few scan  lines.  This  is  useful  for
programs  that  want  to  process  high-resolution  images  without  allocating  enough  memory  to  hold  the
complete image. These programs typically read a few scan lines worth of pixels into a memory buffer,
process the pixels, and store them in another file. The buffer is then re-used for the next set of scan lines.
Image operations like color-correction or compositing ("A over B") are very easy to do incrementally this
way. With clever buffering of a few extra scan lines, incremental versions of operations that require access
to neighboring pixels, like blurring or sharpening, are also possible. 

    void
    readRgba2 (const char fileName[])
    {
        RgbaInputFile file (fileName);
        Box2i dw = file.dataWindow();

        int width  = dw.max.x - dw.min.x + 1;
        int height = dw.max.y - dw.min.y + 1;
        Array2D<Rgba> pixels (10, width);

        while (dw.min.y <= dw.max.y)
        {
            file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width,
                                 1, width);

            file.readPixels (dw.min.y, min (dw.min.y + 9, dw.max.y));
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            // processPixels (pixels)
            
            dw.min.y += 10;
        }
    }

Again, we open the file and read the file header by constructing an  RgbaInputFile object. Then we
allocate a memory buffer that is just large enough to hold ten complete scan lines. We call readPixels()
to copy the pixels from the file into our buffer, ten scan lines at a time. Since we want to re-use the buffer
for every block of ten scan lines, we have to call setFramebuffer() before each readPixels() call, in
order  to  associate  memory  address  &pixels[0][0] first  with  pixel  coordinates
(dw.min.x, dw.min.y), then with  (dw.min.x, dw.min.y+10),  (dw.min.x, dw.min.y+20) and
so on. 

2.6 Reading Custom Attributes

In section 2.3, we showed how to store custom attributes in the image file header. Here we show how to
test whether a given file's header contains particular attributes, and how to read those attributes' values. 

    void
    readHeader (const char fileName[])
    {
        RgbaInputFile file (fileName);

        const StringAttribute *comments =
            file.header().findTypedAttribute <StringAttribute> ("comments");

        const M44fAttribute *cameraTransform = 
            file.header().findTypedAttribute <M44fAttribute> ("cameraTransform");

        if (comments)
            cout << "comments\n   " << comments->value() << endl;

        if (cameraTransform)
            cout << "cameraTransform\n" << cameraTransform->value() << flush;
    }

As usual, we open the file by constructing an RgbaInputFile object. Calling  findTypedAttribute<T>
(n) searches  the  header  for  an  attribute  with  type  T and  name  n.  If  a  matching  attribute  is  found,
findTypedAttribute() returns a pointer to the attribute. If the header contains no attribute with name
n, or if the header contains an attribute with name n, but the attribute's type is not T, findAttribute()
returns  0.  Once we have pointers to the attributes we were looking for, we can access their values by
calling the attributes' value() methods. 

In this example, we handle the possibility that the attributes we want may not exist by explicitly checking
for 0 pointers. Sometimes it is more convenient to rely on exceptions instead. Function typedAttribute
(), a variation of  findTypedAttribute(), also searches the header for an attribute with a given name
and type, but if the attribute in question does not exist,  typedAttribute() throws an exception rather
than returning 0. 

Note  that  the  pointers  returned  by  findTypedAttribute() point  to  data  that  are  part  of  the
RgbaInputFile object. The pointers become invalid as soon as the RgbaInputFile object is destroyed.
Therefore, the following will not work: 

    void
    readComments (const char fileName[], StringAttribute *&comments)
    {
        // error: comments pointer is invalid after this function returns
        RgbaInputFile file (fileName);
        comments = file.header().findTypedAttribute <StringAttribute> ("comments");
    }
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readComments() must copy the attribute's value before it returns; for example, like this: 

    void
    readComments (const char fileName[], string &comments)
    {

        RgbaInputFile file (fileName);
        comments = file.header().typedAttribute<StringAttribute>("comments").value();
    }

2.7 Luminance/Chroma and Gray­Scale Images

Writing an RGBA image file usually preserves the pixels without losing any data; saving an image file and
reading it back does not alter the pixels' R, G, B and A values. Most of the time, lossless data storage is
exactly what we want, but sometimes file space or transmission bandwidth are limited, and we would like
to reduce the size of our image files. It is often acceptable if the numbers in the pixels change slightly as
long as the image still looks just like the original. 

The RGBA interface in the IlmImf library supports storing RGB data in luminance/chroma format. The R,
G, and B channels are converted into a luminance channel, Y, and two chroma channels, RY and BY. The
Y channel represents a pixel's brightness, and the two chroma channels represent its color.  The human
visual system's spatial resolution for color is much lower than the spatial resolution for brightness. This
allows us to reduce the horizontal and vertical resolution of the RY and BY channels by a factor of two.
The visual appearance of the image doesn't change, but the image occupies only half as much space, even
before data compression is applied. (For every four pixels, we store four Y values, one RY value, and one
BY value, instead of four R, four G, and four B values.) 

When opening a file for writing, a program can select how it wants the pixels to be stored. The constructors
for class RgbaOutputFile have an rgbaChannels argument, which determines the set of channels in the
file:

WRITE_RGB red, green, blue 

WRITE_RGBA red, green, blue, alpha

WRITE_YC luminance, chroma

WRITE_YCA luminance, chroma, alpha

WRITE_Y luminance only

WRITE_YA luminance, alpha

WRITE_Y and WRITE_YA provide an efficient way to store gray-scale images. The chroma channels for a
gray-scale image contain only zeroes, so they can be omitted from the file. 

When an image file is opened for reading, class RgbaInputFile automatically detects luminance/chroma
images and converts the pixels back to RGB format. 
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3 Using the General Interface for Scan­line­based Files

3.1 Writing an Image File

This example demonstrates how to write an OpenEXR image file with two channels: one channel, of type
HALF, is called G, and the other, of type FLOAT, is called Z. The size of the image is width by height
pixels. The data for the two channels are supplied in two separate buffers, gPixels and zPixels. Within
each buffer, the pixels of each scan line are contiguous in memory. 

    void
    writeGZ1 (const char fileName[],
              const half *gPixels,
              const float *zPixels,
              int width,
              int height)
    {
        Header header (width, height);                                    // 1
        header.channels().insert ("G", Channel (HALF));                   // 2
        header.channels().insert ("Z", Channel (FLOAT));                  // 3
    
        OutputFile file (fileName, header);                               // 4

        FrameBuffer frameBuffer;                                          // 5

        frameBuffer.insert ("G",                                // name   // 6
                            Slice (HALF,                        // type   // 7
                                   (char *) gPixels,            // base   // 8
                                   sizeof (*gPixels) * 1,       // xStride// 9
                                   sizeof (*gPixels) * width)); // yStride// 10

        frameBuffer.insert ("Z",                                // name   // 11
                            Slice (FLOAT,                       // type   // 12
                                   (char *) zPixels,            // base   // 13
                                   sizeof (*zPixels) * 1,       // xStride// 14
                                   sizeof (*zPixels) * width)); // yStride// 15

        file.setFrameBuffer (frameBuffer);                                // 16
        file.writePixels (height);                                        // 17
    }

In line 1, an OpenEXR header is created, and the header's display window and data window are both set to
(0, 0) - (width-1, height-1). 

Lines 2 and 3 specify the names and types of the image channels that will be stored in the file. 

Constructing an OutputFile object in line 4 opens the file with the specified name, and stores the header
in the file. 

Lines 5 through 16 tell the OutputFile object how the pixel data for the image channels are laid out in
memory. After constructing a FrameBuffer object, a Slice is added for each of the image file's channels.
A Slice describes the memory layout of one channel. The constructor for the  Slice object takes four
arguments,  type,  base,  xStride, and  yStride.  type specifies the pixel data type (HALF,  FLOAT, or
UINT); the other three arguments define the memory address of pixel (x,y) as 

    base + x * xStride + y * yStride.

Note that base is of type char*, and that offsets from base are not implicitly multiplied by the size of an
individual pixel, as in the RGBA-only interface. xStride and yStride must explictly take the size of the
pixels into account. 

With the values specified in our example, the IlmImf library computes the address of the G channel of
pixel (x,y) like this: 

    (half*)((char*)gPixels + x * sizeof(half) * 1 + y * sizeof(half) * width)
  = (half*)((char*)gPixels + x * 2 + y * 2 * width),
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The address of the Z channel of pixel (x,y) is 

    (float*)((char*)zPixels + x * sizeof(float) * 1 + y * sizeof(float) * width)
  = (float*)((char*)zPixels + x * 4 + y * 4 * width).

The writePixels() call in line 9 copies the image's pixels from memory into the file. As in the RGBA-
only interface, the argument to writePixels() specifies how many scan lines are copied into the file (see
section 2.1, Writing an RGBA Image File, on page 3). 

If the image file contains a channel for which the FrameBuffer object has no corresponding Slice, then
the pixels for that channel in the file are filled with zeroes. If the FrameBuffer object contains a Slice
for which the file has no channel, then the Slice is ignored. 

Returning from function writeGZ1() destroys the local OutputFile object and closes the file. 

3.2 Writing a Cropped Image

Writing a cropped image using the general interface is analogous to writing a cropped image using the
RGBA-only  interface,  as shown in section  2.2,  on page  4:  In the file's header  the data window is set
explicitly instead of being generated automatically from the image's width and height. The number of scan
lines that are stored in the file is equal to the height of the data window, instead of the height of the entire
image. As in section 2.2, the example code below assumes that the memory buffers for the pixels are large
enough to hold width by height pixels, but only the region that corresponds to the data window will be
stored in the file. For smaller memory buffers with room only for the pixels in the data window, the base,
xStride and  yStride arguments  for  the  FrameBuffer object's  slices  would  have  to  be  adjusted
accordingly (again, see section 2.2). 

    void
    writeGZ2 (const char fileName[],
              const half *gPixels,
              const float *zPixels,
              int width,
              int height,
              const Box2i &dataWindow)
    {
        Header header (width, height);
        header.dataWindow() = dataWindow;
        header.channels().insert ("G", Channel (HALF));
        header.channels().insert ("Z", Channel (FLOAT));

        OutputFile file (fileName, header);

        FrameBuffer frameBuffer;

        frameBuffer.insert ("G",                                // name
                            Slice (HALF,                        // type
                                   (char *) gPixels,            // base
                                   sizeof (*gPixels) * 1,       // xStride
                                   sizeof (*gPixels) * width)); // yStride

        frameBuffer.insert ("Z",                                // name
                            Slice (FLOAT,                       // type
                                   (char *) zPixels,            // base
                                   sizeof (*zPixels) * 1,       // xStride
                                   sizeof (*zPixels) * width)); // yStride

        file.setFrameBuffer (frameBuffer);
        file.writePixels (dataWindow.max.y - dataWindow.min.y + 1);
    }

3.3 Reading an Image File

In this example, we read an OpenEXR image file using the IlmImf library's general interface. We assume
that the file contains two channels, R, and G, of type HALF, and one channel, Z, of type FLOAT. If one of
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those channels is not present in the image file, the corresponding memory buffer for the pixels will be
filled with an appropriate default value. 

    void
    readGZ1 (const char fileName[],
             Array2D<half> &rPixels,
             Array2D<half> &gPixels,
             Array2D<float> &zPixels,
             int &width, int &height)
    {
        InputFile file (fileName);

        Box2i dw = file.header().dataWindow();
        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;

        rPixels.resizeErase (height, width);
        gPixels.resizeErase (height, width);
        zPixels.resizeErase (height, width);

        FrameBuffer frameBuffer;

        frameBuffer.insert ("R",                                  // name
                            Slice (HALF,                          // type
                                   (char *) (&rPixels[0][0] -     // base
                                             dw.min.x -
                                             dw.min.y * width),
                                   sizeof (rPixels[0][0]) * 1,    // xStride
                                   sizeof (rPixels[0][0]) * width,// yStride
                                   1, 1,                          // x/y sampling
                                   0.0));                         // fillValue

        frameBuffer.insert ("G",                                  // name
                            Slice (HALF,                          // type
                                   (char *) (&gPixels[0][0] -     // base
                                             dw.min.x -
                                             dw.min.y * width),
                                   sizeof (gPixels[0][0]) * 1,    // xStride
                                   sizeof (gPixels[0][0]) * width,// yStride
                                   1, 1,                          // x/y sampling
                                   0.0));                         // fillValue

        frameBuffer.insert ("Z",                                  // name
                            Slice (FLOAT,                         // type
                                   (char *) (&zPixels[0][0] -     // base
                                             dw.min.x -
                                             dw.min.y * width),
                                   sizeof (zPixels[0][0]) * 1,    // xStride
                                   sizeof (zPixels[0][0]) * width,// yStride
                                   1, 1,                          // x/y sampling
                                   FLT_MAX));                     // fillValue

        file.setFrameBuffer (frameBuffer);
        file.readPixels (dw.min.y, dw.max.y);
    }

First, we open the file with the specified name, by constructing an InputFile object. 

Using the Array2D class template, we allocate memory buffers for the image's R, G and Z channels. The
buffers are big enough to hold all pixels in the file's data window. 

Next, we create a FrameBuffer object, which describes our buffers to the IlmImf library. For each image
channel, we add a slice to the FrameBuffer. 

As usual, the slice's type,  xStride, and yStride describe the corresponding buffer's layout. For the R
channel, pixel (dw.min.x, dw.min.y) is at address &rPixels[0][0]. By setting the type, xStride
and yStride of the corresponding Slice object as shown above, evaluating 

    base + x * xStride + y * yStride

for pixel (dw.min.x, dw.min.y) produces 
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      (char*)(&rPixels[0][0] ­ dw.min.x ­ dw.min.y * width)
       + dw.min.x * sizeof (rPixels[0][0]) * 1
       + dw.min.y * sizeof (rPixels[0][0]) * width

    = (char*)&rPixels[0][0]
       ­ dw.min.x * sizeof (rPixels[0][0])
       ­ dw.min.y * sizeof (rPixels[0][0]) * width
       + dw.min.x * sizeof (rPixels[0][0])
       + dw.min.y * sizeof (rPixels[0][0]) * width

    = &rPixels[0][0].

The  address  calculations  for  pixels  (dw.min.x+1, dw.min.y) and  (dw.min.x, dw.min.y+1)
produce  &rPixels[0][0]+1 and  &rPixels[0][0]+width, which is equivalent to  &rPixels[0][1]
and &rPixels[1][0]. 

Each Slice has a fillValue. If the image file does not contain an image channel for the Slice, then the
corresponding memory buffer will be filled with the fillValue. 

The Slice's remaining two parameters, xSampling and ySampling are used for images where some of
the channels are subsampled, for instance, the RY and BY channels in luminance/chroma images. (see
section 2.7, Luminance/Chroma and Gray-scale Images, on page 8). Unless an image contains subsampled
channels,  xSampling and  ySampling should  always  be  set  to  1.  For  details  see  header  files
ImfFrameBuffer.h and ImfChannelList.h. 

After describing our memory buffers' layout, we call readPixels() to copy the pixel data from the file
into the buffers. Just as with the RGBA-only interface, readPixels() allows random-access to the scan
lines in the file (see section 2.5 Reading an RGBA Image File, on page 6). 

3.4 Interleaving Image Channels in the Frame Buffer

Here is a variation of the previous example. We are reading an image file, but instead of storing each image
channel in a separate memory buffer, we interleave the channels in a single buffer. The buffer is an array of
structs, which are defined like this: 

    typedef struct GZ
    {
        half  g;
        float z;
    };

The code to  read the  file  is  almost the  same as before;  aside  from reading  only two instead of  three
channels, the only difference is how base,  xStride and yStride for the Slices in the FrameBuffer
object are computed: 

    void
    readGZ2 (const char fileName[],
             Array2D<GZ> &pixels,
             int &width, int &height)
    {
        InputFile file (fileName);

        Box2i dw = file.header().dataWindow();
        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;
        int dx = dw.min.x;
        int dy = dw.min.y;

        pixels.resizeErase (height, width);

        FrameBuffer frameBuffer;

        frameBuffer.insert ("G",
                            Slice (HALF,
                                   (char *) &pixels[-dy][-dx].g,
                                    sizeof (pixels[0][0]) * 1,
                                    sizeof (pixels[0][0]) * width));
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        frameBuffer.insert ("Z",
                            Slice (FLOAT,
                                   (char *) &pixels[-dy][-dx].z,
                                    sizeof (pixels[0][0]) * 1,
                                    sizeof (pixels[0][0]) * width));

        file.setFrameBuffer (frameBuffer);
        file.readPixels (dw.min.y, dw.max.y);
    }

3.5 Which Channels are in a File?

In functions readGZ1() and readGZ2(), above, we simply assumed that the files we were trying to read
contained a certain set of channels. We relied on the IlmImf library to do "something reasonable" in case
our assumption was not true. Sometimes we want to know exactly what channels are in an image file
before reading any pixels, so that we can do what we think is appropriate. 

The file's  header  contains  the  file's  channel  list.  Using iterators  similar  to  those in  the  C++ Standard
Template Library, we can iterate over the channels: 

    const ChannelList &channels = file.header().channels();

    for (ChannelList::ConstIterator i = channels.begin(); i != channels.end(); ++i)
    {
        const Channel &channel = i­>second;
        // ...
    }

Channels can also be accessed by name, either with the [] operator, or with the findChannel() function: 

    const ChannelList &channels = file.header().channels();
    const Channel &channel = channelList["G"];
    const Channel *channelPtr = channelList.findChannel("G");

The difference between the  [] operator and  findChannel() function is how errors are handled: If the
channel in question is not present, findChannel() returns 0; the [] operator throws an exception. 
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4 Tiles, Levels and Level Modes

A single tiled OpenEXR file can hold multiple versions of an image, each with a different resolution. Each
version is called a level. A tiled file's level mode defines how many levels are stored in the file. There are
three different level modes: 

ONE_LEVEL The file contains only a single, full-resolution level. A ONE_LEVEL image file
is equivalent to a scan-line-based file; the only difference is that the pixels are
accessed by tile instead of by scan line. 

MIPMAP_LEVELS The  file  contains  multiple  levels.  The  first  level  holds  the  image  at  full
resolution. Each successive level is half the resolution of the previous level in x
and y direction. The last level contains only a single pixel.  MIPMAP_LEVELS
files are used for texture-mapping and similar applications. 

RIPMAP_LEVELS Like  MIPMAP_LEVELS,  but  with  more  levels.  The  levels  include  all
combinations  of  reducing  the  resolution  of  the  image  by  powers  of  two
independently  in  x  and  y  direction.  Used  for  texture  mapping,  like
MIPMAP_LEVELS.  The additional levels in a RIPMAP_LEVELS file can help to
accelerate anisotropic filtering during texture lookups. 

In  MIPMAP_LEVELS and RIPMAP_LEVELS mode, the size (width or height) of each level is computed by
halving the size of the level with the next higher resolution. If the size of the higher-resolution level is odd,
then the size of the lower-resolution level must be rounded up or down in order to avoid arriving at a non-
integer width or height. The rounding direction is determined by the file's level size rounding mode. 

Within each level, the pixels of the image are stored in a two-dimensional array of tiles. The tiles in an
OpenEXR file can be any rectangular shape, but all tiles in a file have the same size. This means that
lower-resolution levels contain fewer, rather than smaller, tiles. 

An OpenEXR file's level mode and rounding mode, and the size of the tiles are stored in an attribute in the
file header. The value of this attribute is a TileDescription object: 

    enum LevelMode
    {
        ONE_LEVEL,
        MIPMAP_LEVELS,
        RIPMAP_LEVELS
    };

    enum LevelRoundingMode
    {
        ROUND_DOWN,
        ROUND_UP
    };

    class TileDescription
    {
      public:

        unsigned int      xSize;        // size of a tile in the x dimension
        unsigned int      ySize;        // size of a tile in the y dimension
        LevelMode         mode;
        LevelRoundingMode roundingMode;

        ...                             // (methods omitted)
    };
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5 Using the RGBA­only Interface for Tiled Files

5.1 Writing a Tiled RGBA Image File with One Resolution Level

Writing a tiled RGBA image with a single level is easy: 

    void
    writeTiledRgbaONE1 (const char fileName[],
                        const Rgba *pixels,
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,         // image size
                                 tileWidth, tileHeight, // tile size
                                 ONE_LEVEL,             // level mode
                                 ROUND_DOWN,            // rounding mode
                                 WRITE_RGBA);           // channels in file // 1

        out.setFrameBuffer (pixels, 1, width);                              // 2

        for (int tileY = 0; tileY < out.numYTiles (); ++tileY)              // 3
            for (int tileX = 0; tileX < out.numXTiles (); ++tileX)          // 4
                out.writeTile (tileX, tileY);                               // 5
    }

Opening the file and defining the pixel data layout in memory are done in almost the same way as for scan-
line-based files: 

Construction  of  the  TiledRgbaOutputFile object,  in  line  1,  creates  an  OpenEXR header,  sets  the
header's attributes, opens the file with the specified name, and stores the header in the file. The header's
display window and data window are both set to (0, 0) - (width-1, height-1). The size of each
tile in the file will be tileWidth by tileHeight pixels. The channel list contains four channels, R, G, B,
and A, of type HALF. 

Line 2 specifies how the pixel data are laid out in memory. The arithmetic involved in calculating the
memory address of a specific pixel is the same as for the scan-line-based interface (see section  2.1). We
assume that the  pixels pointer points to an array of  width*height pixels, which contains the entire
image. 

Lines 3 and 4 loop over all tiles within the image. The TiledRgbaOutputFile's numXTiles() method
returns the number of tiles in the x direction, and similarly, the numYTiles() method returns the number
of tiles in the y dimension. During these loops, line 5 writes out each tile in the image. 

This simple method works well when enough memory is available to allocate a frame buffer for the entire
image. When allocating a frame buffer for the whole image is not desirable, for example because the image
is very large, a smaller frame buffer can be used. Even a frame buffer that can hold only a single tile is
sufficient, as demonstrated in the following example: 

    void
    writeTiledRgbaONE2 (const char fileName[],
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,         // image size
                                 tileWidth, tileHeight, // tile size
                                 ONE_LEVEL,             // level mode
                                 ROUND_DOWN,            // rounding mode
                                 WRITE_RGBA);           // channels in file // 1

        Array2D<Rgba> pixels (tileHeight, tileWidth);                       // 2

        for (int tileY = 0; tileY < out.numYTiles (); ++tileY)              // 3
        {
            for (int tileX = 0; tileX < out.numXTiles (); ++tileX)          // 4
            {
                Box2i range = out.dataWindowForTile (tileX, tileY);         // 5
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                generatePixels (pixels, width, height, range);              // 6

                out.setFrameBuffer (&pixels[-range.min.y][-range.min.x],
                                    1,          // xStride
                                    tileWidth); // yStride                  // 7

                out.writeTile (tileX, tileY);                               // 8
            }
        }
    }

In line 2 we allocate a  pixels array with tileWidth*tileHeight elements, which is just enough for
one tile. Line 5 computes the data window range for each tile, that is, the set of pixel coordinates covered
by the tile. The generatePixels() function, in line 6, fills the pixels array with one tile's worth of
image data. The same pixels array is reused for all tiles. We must call  setFrameBuffer(), in line 7,
before writing each tile so that the pixels in the array are accessed properly in the writeTile() call in
line 8. Again, the address arithmetic to access the pixels is the same as for scan-line-based files. The values
for the base, xStride, and yStride arguments to the setFrameBuffer() call must be chosen so that
evaluating the expression 

    base + x * xStride + y * yStride

produces the address of the pixel with coordinates (x,y). 

5.2 Writing a Tiled RGBA Image File with Mipmap Levels

In order to store a multiresolution image in a file, we can allocate a frame buffer large enough for the
highest-resolution level, (0,0), and reuse it for all levels: 

    void
    writeTiledRgbaMIP1 (const char fileName[],
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,
                                 tileWidth, tileHeight,
                                 MIPMAP_LEVELS, 
                                 ROUND_DOWN,
                                 WRITE_RGBA);                                   // 1

        Array2D<Rgba> pixels (height, width);                                   // 2
        out.setFrameBuffer (&pixels[0][0], 1, width);                           // 3

        for (int level = 0; level < out.numLevels (); ++level)                  // 4
        {
            generatePixels (pixels, width, height, level);                      // 5

            for (int tileY = 0; tileY < out.numYTiles (level); ++tileY)         // 6
                for (int tileX = 0; tileX < out.numXTiles (level); ++tileX)     // 7
                    out.writeTile (tileX, tileY, level);                        // 8
        }
    }

The  main  difference  here  is  the  use  of  MIPMAP_LEVELS in  line  1  for  the  TiledRgbaOutputFile
constructor. This signifies that the file will contain multiple levels, each level being a factor of 2 smaller in
both dimensions than the previous level. Mipmap images contain n levels, with level numbers 

    (0,0), (1,1), ... (n-1,n-1),

where 

    n = floor (log (max (width, height)) / log (2)) + 1

if the level size rounding mode is ROUND_DOWN, or 

    n = ceil (log (max (width, height)) / log (2)) + 1
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if the level size rounding mode is ROUND_UP. Note that even though level numbers are pairs of integers,
(lx,ly), only levels where lx equals ly are used in MIPMAP_LEVELS files. 

Line 2 allocates a pixels array with width by height pixels, big enough to hold the highest-resolution
level. 

In addition to looping over all tiles (lines 6 and 7), we must loop over all levels in the image (line 4).
numLevels() returns the number of levels,  n, in our mipmapped image. Since the tile sizes remain the
same  in  all  levels,  the  number  of  tiles  in  both  dimensions  varies  between  levels.  numXTiles() and
numYTiles() take a level number as an optional argument, and return the number of tiles in the x or y
direction for the corresponding level. Line 5 fills the pixels array with appropriate data for each level. 

As with ONE_LEVEL images, we can choose to only allocate a frame buffer for a single tile and reuse it for
all tiles in the image: 

    void
    writeTiledRgbaMIP2 (const char fileName[],
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,
                                 tileWidth, tileHeight,
                                 MIPMAP_LEVELS,
                                 ROUND_DOWN,
                                 WRITE_RGBA);

        Array2D<Rgba> pixels (tileHeight, tileWidth);

        for (int level = 0; level < out.numLevels (); ++level)
        {
            for (int tileY = 0; tileY < out.numYTiles (level); ++tileY)
            {
                for (int tileX = 0; tileX < out.numXTiles (level); ++tileX)
                {
                    Box2i range = out.dataWindowForTile (tileX, tileY, level);

                    generatePixels (pixels, width, height, range, level);

                    out.setFrameBuffer (&pixels[-range.min.y][-range.min.x],
                                        1,              // xStride
                                        tileWidth);     // yStride

                    out.writeTile (tileX, tileY, level);
                }
            }
        }
    }

The structure of this code is the same as for writing a ONE_LEVEL image using a tile-sized frame buffer,
but we have to loop over more tiles. Also, dataWindowForTile() takes an additional level argument to
determine the pixel range for the tile at the specified level. 

5.3 Writing a Tiled RGBA Image File with Ripmap Levels

The ripmap level mode allows for storing all combinations of reducing the resolution of the image by
powers of two independently in both dimensions. Ripmap files contains nx*ny levels, with level  numbers:

    (0, 0),   (1, 0),   ... (nx­1, 0),
    (0, 1),   (1, 1),   ... (nx­1, 1),
     ...
    (0,ny­1), (1,ny­1), ... (nx­1,ny­1)

where 

    nx = floor (log (width) / log (2)) + 1
    ny = floor (log (height) / log (2)) + 1
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if the level size rounding mode is ROUND_DOWN, or 

    nx = ceil (log (width) / log (2)) + 1
    ny = ceil (log (height) / log (2)) + 1

if the level size rounding mode is ROUND_UP. 

With a frame buffer that is large enough to hold level (0,0), we can write a ripmap file like this: 

    void
    writeTiledRgbaRIP1 (const char fileName[],
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,
                                 tileWidth, tileHeight,
                                 RIPMAP_LEVELS,
                                 ROUND_DOWN,
                                 WRITE_RGBA);

        Array2D<Rgba> pixels (height, width);
        out.setFrameBuffer (&pixels[0][0], 1, width);

        for (int yLevel = 0; yLevel < out.numYLevels (); ++yLevel)
        {
            for (int xLevel = 0; xLevel < out.numXLevels (); ++xLevel)
            {
                generatePixels (pixels, width, height, xLevel, yLevel);

                for (int tileY = 0; tileY < out.numYTiles (yLevel); ++tileY)
                    for (int tileX = 0; tileX < out.numXTiles (xLevel); ++tileX)
                        out.writeTile (tileX, tileY, xLevel, yLevel);
            }
        }
    }

As for ONE_LEVEL and MIPMAP_LEVELS files, the frame buffer doesn't have to be large enough to hold a
whole level. Any frame buffer big enough to hold at least a single tile will work. 

5.4 Reading a Tiled RGBA Image File

Reading a tiled RGBA image file is done similarly to writing one: 

    void
    readTiledRgba1 (const char fileName[],
                    Array2D<Rgba> &pixels,
                    int &width,
                    int &height)
    {
        TiledRgbaInputFile in (fileName);
        Box2i dw = in.dataWindow();

        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;
        int dx = dw.min.x;
        int dy = dw.min.y;

        pixels.resizeErase (height, width);

        in.setFrameBuffer (&pixels[-dy][-dx], 1, width);

        for (int tileY = 0; tileY < in.numYTiles(); ++tileY)
            for (int tileX = 0; tileX < in.numXTiles(); ++tileX)
                in.readTile (tileX, tileY);
    }

First  we  need  to  create  a  TiledRgbaInputFile object  for  the  given  file  name.  We  then  retrieve
information about the data window in order to create an appropriately sized frame buffer, in this case large
enough to hold the whole image at level (0,0). After we set the frame buffer, we iterate over the tiles we
are interested in, and read them from the file. 
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This example only reads the highest-resolution level of the image. It can be extended to read all levels, for
multiresolution images, by also iterating over all levels within the image, analogous to the examples in
sections section 5.2 and 5.3. 

19



6 Using the General Interface for Tiled Files

6.1 Writing a Tiled Image File

This example is a variation of the one in section 3.1, on page 9. We are writing a ONE_LEVEL image file
with two channels, G, and Z, of type  HALF, and  FLOAT respectively, but here the file is tiled instead of
scan-line-based: 

    void
    writeTiled1 (const char fileName[],
                 Array2D<GZ> &pixels,
                 int width, int height,
                 int tileWidth, int tileHeight)
    {
        Header header (width, height);                                          // 1
        header.channels().insert ("G", Channel (HALF));                         // 2
        header.channels().insert ("Z", Channel (FLOAT));                        // 3

        header.setTileDescription
            (TileDescription (tileWidth, tileHeight, ONE_LEVEL));               // 4
        
        TiledOutputFile out (fileName, header);                                 // 5

        FrameBuffer frameBuffer;                                                // 6

        frameBuffer.insert ("G",                                     // name    // 7
                            Slice (HALF,                             // type    // 8
                                   (char *) &pixels[0][0].g,         // base    // 9
                                    sizeof (pixels[0][0]) * 1,       // xStride // 10
                                    sizeof (pixels[0][0]) * width)); // yStride // 11

        frameBuffer.insert ("Z",                                     // name    // 12
                            Slice (FLOAT,                            // type    // 13
                                   (char *) &pixels[0][0].z,         // base    // 14
                                    sizeof (pixels[0][0]) * 1,       // xStride // 15
                                    sizeof (pixels[0][0]) * width)); // yStride // 16

        out.setFrameBuffer (frameBuffer);                                       // 17

        for (int tileY = 0; tileY < out.numYTiles (); ++tileY)                  // 18
            for (int tileX = 0; tileX < out.numXTiles (); ++tileX)              // 19
                out.writeTile (tileX, tileY);                                   // 20
    }

As one would expect, the code here is very similar to the code in section 3.1. The file's header is created in
line 1, while lines 2 and 3 specify the names and types of the image channels that will be stored in the file.
An important addition is line 4, where we define the size of the tiles and the level mode. In this example we
use  ONE_LEVEL for simplicity. Line 5 opens the file and writes the header. Lines 6 through 17 tell the
TiledOutputFile object the location and layout of the pixel data for each channel.  Finally, lines 18
through 20 loop over all tiles in the image and write out each tile. 

6.2 Reading a Tiled Image File

Reading a tiled file with the general  interface is virtually identical to reading a scan-line-based file, as
shown in section 3.4, on page 12; only the last three lines are different. Instead of reading all scan lines at
once with a single function call, here we must iterate over all tiles we want to read. 

    void
    readTiled1 (const char fileName[],
                Array2D<GZ> &pixels,
                int &width, int &height)
    {
        TiledInputFile in (fileName);

        Box2i dw = in.header().dataWindow();
        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;
        int dx = dw.min.x;
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        int dy = dw.min.y;

        pixels.resizeErase (height, width);

        FrameBuffer frameBuffer;

        frameBuffer.insert ("G",
                            Slice (HALF,
                                   (char *) &pixels[-dy][-dx].g,
                                    sizeof (pixels[0][0]) * 1,
                                    sizeof (pixels[0][0]) * width));

        frameBuffer.insert ("Z",
                            Slice (FLOAT,
                                   (char *) &pixels[-dy][-dx].z,
                                    sizeof (pixels[0][0]) * 1,
                                    sizeof (pixels[0][0]) * width));

        in.setFrameBuffer (frameBuffer);

        for (int tileY = 0; tileY < in.numYTiles(); ++tileY)
            for (int tileX = 0; tileX < in.numXTiles(); ++tileX)
                in.readTile (tileX, tileY);
    }

In this example we assume that the file we want to read contains two channels, G and Z, of type HALF and
FLOAT respectively.  If  the  file  contains  other  channels,  we  ignore  them.  We  only  read  the  highest-
resolution level of the image. If the input file contains more levels (MIPMAP_LEVELS or MIPMAP_LEVELS),
we can access the extra levels by calling a four-argument version of the readTile() function: 

    in.readTile (tileX, tileY, levelX, levelY);
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7 Miscellaneous

7.1 Is this an OpenEXR File?

Sometimes we want to test quickly if a given file is an OpenEXR file. This can be done by looking at the
beginning  of  the  file:  The  first  four  bytes  of  every  OpenEXR file  contain  the  32-bit  integer  "magic
number" 20000630 in little-endian byte order. After reading a file's first four bytes via any of the operating
system's standard file I/O mechanisms, we can compare them with the magic number, either by calling
function  isImfMagic() or by explicitly testing if the bytes contain the values  0x76,  0x2f,  0x31, and
0x01. 

Given a file name,  the following function returns true if  the corresponding file exists, is readable,  and
contains an OpenEXR image: 

    bool
    isOpenExrFile (const char fileName[])
    {
        std::ifstream f (fileName, std::ios_base::binary);

        char bytes[4];
        f.read (bytes, sizeof (bytes));

        return !!f && Imf::isImfMagic (bytes);
    }

7.2 Custom Low­Level File I/O

In all of the previous file reading and writing examples, we were given a file name, and we relied on the
constructors for our input file or output file objects to open the file. In some contexts, for example in a
plugin for an existing application program, we may have to read from or write to a file that has already
been opened.  The representation of  the open file as a  C or C++ data type depends on the application
program and on the operating system. 

At  its  lowest  level,  the  IlmImf  library  performs  file  I/O  via  objects  of  type  IStream and  OStream.
IStream and  OStream are  abstract  base  classes.  The  IlmImf  library  contains  two  derived  classes,
StdIFStream and  StdOFStream,  that  implement  reading  from  std::ifstream and  writing  to
std::ofstream objects.  An  application  program  can  implement  alternative  file  I/O  mechanisms  by
deriving  its  own classes  from  Istream and  Ostream.  This  way,  OpenEXR images  can  be  stored  in
arbitrary file-like objects, as long as it  is possible to support  read, write, seek and tell operations with
semantics similar to the corresponding std::ifstream and std::ofstream methods. 

For example, assume that we want to read an OpenEXR image from a C stdio file (of type FILE *) that
has already been opened. To do this, we derive a new class, C_IStream, from IStream. The declaration
of class IStream looks like this: 

    class IStream
    {
      public:

        virtual ~IStream ();

        virtual bool    read (char c[], int n) = 0;
        virtual Int64   tellg () = 0;
        virtual void    seekg (Int64 pos) = 0;
        virtual void    clear ();
        const char *    fileName () const;

      protected:

        IStream (const char fileName[]);

      private:

        ...

22



    };

Our derived class needs a public constructor, and it must override four methods: 

    class C_IStream: public IStream
    {
      public:

        C_IStream (FILE *file, const char fileName[]):
            IStream (fileName), _file (file) {}

        virtual bool    read (char c[], int n);
        virtual Int64   tellg ();
        virtual void    seekg (Int64 pos);
        virtual void    clear ();

      private:

        FILE *          _file;
    };

read(c,n) reads n bytes from the file, and stores them in array c. If reading hits the end of the file before
n bytes have been read, or if an I/O error occurs, read(c,n) throws an exception. If read(c,n) hits the
end of the file after reading n bytes, it returns false, otherwise it returns true: 

    bool
    C_IStream::read (char c[], int n)
    {
        if (n != fread (c, 1, n, _file))
        {
            // fread() failed, but the return value does not distinguish
            // between I/O errors and end of file, so we call ferror() to
            // determine what happened.

            if (ferror (_file))
                Iex::throwErrnoExc();
            else
                throw Iex::InputExc ("Unexpected end of file.");
        }

        return feof (_file);
    }

tellg() returns the current reading position, in bytes, from the beginning of the file. The next call to
read() will begin reading at the indicated position: 

    Int64
    C_IStream::tellg ()
    {
        return ftell (_file);
    }

seekg(pos) sets the current reading position to pos bytes from the beginning of the file: 

    void
    C_IStream::seekg (Int64 pos)
    {
        clearerr (_file);
        fseek (_file, pos, SEEK_SET);
    }

clear() clears any error flags that may be set on the file after a read() or seekg() operation has failed: 

    void
    C_IStream::clear ()
    {
        clearerr (_file);
    }

In order to read an RGBA image from an open C stdio file, we first make a C_IStream object. Then we
create an RgbaInputFile, passing the C_IStream instead of a file name to the constructor. After that, we
read the image as usual (see section 2.4, Reading an RGBA Image File, on page 5): 
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    void
    readRgbaFILE (FILE *cfile,
                  const char fileName[],
                  Array2D<Rgba> &pixels,
                  int &width,
                  int &height)
    {
        C_IStream istr (cfile, fileName);
        RgbaInputFile file (istr);

        Box2i dw = file.dataWindow();
        width  = dw.max.x ­ dw.min.x + 1;
        height = dw.max.y ­ dw.min.y + 1;
        pixels.resizeErase (height, width);
        file.setFrameBuffer (&pixels[0][0] ­ dw.min.x ­ dw.min.y * width, 1, width);
        file.readPixels (dw.min.y, dw.max.y);
    }

7.3 Preview Images

Graphical  user  interfaces  for  selecting image files  often represent  files  as small  preview or  thumbnail
images. In order to make loading and displaying the preview images fast, OpenEXR files support storing
preview images in the file headers. 

A preview image is an attribute whose value is of type  PreviewImage. A  PreviewImage object is an
array of pixels of type  PreviewRgba. A pixel has four components,  r,  g,  b and  a, of type  unsigned
char, where r, g and b are the pixel's red, green and blue components, encoded with a gamma of 2.2. a is
the pixel's alpha channel;  r,  g and b should be premultiplied by  a. On a typical display with 8-bits per
component,  the preview image can be shown by simply loading  the  r,  g  and  b components  into the
display's frame buffer. (No gamma correction or tone mapping is required.) 

The code fragment below shows how to test if an OpenEXR file has a preview image, and how to access a
preview image's pixels: 

    RgbaInputFile file (fileName);

    if (file.header().hasPreviewImage())
    {
        const PreviewImage &preview = file.header().previewImage();

        for (int y = 0; y < preview.height(); ++y)
            for (int x = 0; x < preview.width(); ++x)
            {
                const PreviewRgba &pixel = preview.pixel (x, y);
                ... 
            }
    }

Writing an OpenEXR file with a preview image is shown in the following example. Since the preview
image is an attribute in the file's header, it is entirely separate from the main image. Here the preview
image is a smaller version of the main image, but this is not required; in some cases storing an easily
recognizable icon may be more appropriate. This example uses the RGBA-only interface to write a scan-
line based file, but preview images are also supported for files that are written using the general interface,
and for tiled files. 

    void
    writeRgbaWithPreview1 (const char fileName[],
                           const Array2D<Rgba> &pixels,
                           int width,
                           int height)
    {
        Array2D <PreviewRgba> previewPixels;                                        // 1
        int previewWidth;                                                           // 2
        int previewHeight;                                                          // 3

        makePreviewImage (pixels, width, height,                                    // 4
                          previewPixels, previewWidth, previewHeight);
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        Header header (width, height);                                              // 5

        header.setPreviewImage                                                      // 6
            (PreviewImage (previewWidth, previewHeight, &previewPixels[0][0]));

        RgbaOutputFile file (fileName, header, WRITE_RGBA);                         // 7
        file.setFrameBuffer (&pixels[0][0], 1, width);                              // 8
        file.writePixels (height);                                                  // 9
    }

Lines 1 through 4 generate the preview image. Line 5 creates a header for the image file. Line 6 converts
the preview image into a PreviewImage attribute, and adds the attribute to the header. Lines 7 through 9
store the header (with the preview image) and the main image in a file. 

Function makePreviewImage(), called in line 4, generates the preview image by scaling the main image
down to one eighth of its original width and height: 

    void
    makePreviewImage (const Array2D<Rgba> &pixels,
                      int width,
                      int height,
                      Array2D<PreviewRgba> &previewPixels,
                      int &previewWidth,
                      int &previewHeight)
    {
        const int N = 8;

        previewWidth  = width / N;
        previewHeight = height / N;
        previewPixels.resizeErase (previewHeight, previewWidth);

        for (int y = 0; y < previewHeight; ++y)
        {
            for (int x = 0; x < previewWidth; ++x)
            {
                const Rgba  &inPixel = pixels[y * N][x * N];
                PreviewRgba &outPixel = previewPixels[y][x];

                outPixel.r = gamma (inPixel.r);
                outPixel.g = gamma (inPixel.g);
                outPixel.b = gamma (inPixel.b);
                outPixel.a = int (clamp (inPixel.a * 255.f, 0.f, 255.f) + 0.5f);
            }
        }
    }

To make this example easier to read, scaling the image is done by just sampling every eighth pixel of every
eighth scan line.  This can lead to aliasing artifacts in the preview image; for a higher-quality preview
image, the main image should be lowpass-filtered before it is subsampled. 

Function  makePreviewImage() calls  gamma() to  convert  the  floating-point  red,  green,  and  blue
components of the sampled main image pixels to unsigned char values. gamma() is a simplified version
of what the exrdisplay program does in order to show an OpenEXR image's floating-point pixels on the
screen (for details, see exrdisplay's source code): 

    unsigned char
    gamma (float x)
    {
        x = pow (5.5555f * max (0.f, x), 0.4545f) * 84.66f;
        return (unsigned char) clamp (x, 0.f, 255.f);
    }

makePreviewImage() converts the pixels' alpha component to unsigned char by by linearly mapping the
range [0.0, 1.0] to [0, 255]. 

Some programs write image files one scan line or tile at a time, while the image is being generated. Since
the image does not yet exist when the file is opened for writing, it is not possible to store a preview image
in the file's header at this time (unless the preview image is an icon that has nothing to do with the main
image). However, it is possible to store a blank preview image in the header when the file is opened. The
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preview image can then be updated as the pixels become available. This is demonstrated in the following
example: 

    void
    writeRgbaWithPreview2 (const char fileName[],
                           int width,
                           int height)
    {
        Array <Rgba> pixels (width);

        const int N = 8;                                         

        int previewWidth = width / N;
        int previewHeight = height / N;
        Array2D <PreviewRgba> previewPixels (previewHeight, previewWidth);

        Header header (width, height);
        header.setPreviewImage (PreviewImage (previewWidth, previewHeight));

        RgbaOutputFile file (fileName, header, WRITE_RGBA);
        file.setFrameBuffer (pixels, 1, 0);

        for (int y = 0; y < height; ++y)
        {
            generatePixels (pixels, width, height, y);
            file.writePixels (1);

            if (y % N == 0)
            {
                for (int x = 0; x < width; x += N)
                {
                    const Rgba  &inPixel = pixels[x];
                    PreviewRgba &outPixel = previewPixels[y / N][x / N];

                    outPixel.r = gamma (inPixel.r);
                    outPixel.g = gamma (inPixel.g);
                    outPixel.b = gamma (inPixel.b);
                    outPixel.a = int (clamp (inPixel.a * 255.f, 0.f, 255.f) + 0.5f);
                }
            }
        }

        file.updatePreviewImage (&previewPixels[0][0]);
    }

7.4 Environment Maps

An environment map is an image that represents an omnidirectional view of a three-dimensional scene as
seen from a particular 3D location. Every pixel in the image corresponds to a 3D direction, and the data
stored in the pixel represent the amount of light arriving from this direction. In 3D rendering applications,
environment maps are often used for image-based lighting techniques that appoximate how objects are
illuminated by their surroundings. Environment maps with enough dynamic range to represent even the
brightest light sources in the environment are sometimes called "light probe images." 

In an OpenEXR file, an environment map is stored as a rectangular pixel array, just like any other image,
but an attribute in the file header indicates that the image is an environment map. The attribute's value,
which is of type Envmap, specifies the relation between 2D pixel locations and 3D directions. Envmap is an
enumeration type. Two values are possible: 

ENVMAP_LATLONG

Latitude-Longitude Map: The environment is projected onto the image using polar coordinates (latitude
and longitude). A pixel's x coordinate corresponds to its longitude, and the y coordinate corresponds to
its latitude. The pixel in the upper left corner of the data window has latitude +/2 and longitude +; the
pixel in the lower right corner has latitude -/2 and longitude -. 
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In 3D space, latitudes -/2 and +/2 correspond to the negative and positive y direction. Latitude 0,
longitude 0 points in the positive z direction; latitude 0, longitude /2 points in the positive x direction. 

For a latitude-longitude map, the size of the data window should be 2×N by N pixels (width by height),
where N can be any integer greater than 0. 

ENVMAP_CUBE

Cube Map: The environment is projected onto the six faces of an axis-aligned cube. The cube's faces
are then arranged in a 2D image as shown below. 

For a cube map, the size of the data window should be N by 6×N pixels (width by height), where N can
be any integer greater than 0. 
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The following code fragment tests if an OpenEXR file contains an environment map, and if it does, which
kind: 

    RgbaInputFile file (fileName);

    if (hasEnvmap (file.header()))
    {
        Envmap type = envmap (file.header());
        ...
    }

For each kind of environment map, the IlmImf library provides a set of routines that convert from 3D
directions to 2D floating-point pixel locations and back. Those routines are useful in application programs
that  create environment  maps and  in programs that  perform map lookups.  For  details,  see header  file
ImfEnvmap.h. 

7.5 Thread­Safety

Except  for  inititialization,  the IlmImf  library  is  thread-safe in  the following  sense:  In  a  multithreaded
application  program,  multiple  threads  can  concurrently  read  and  write  distinct  OpenEXR  files,  but
multithreaded reading or writing of a single file requires mutual exclusion.  In other words, each thread can
independently create, use and destroy its own input and output file objects, but if multiple threads share a
single input or output file object, then the application program must ensure mutual exclusion between the
threads during accesses to the object.

Before any OpenEXR files can be read or written, the IlmImf library must initialize some internal data
structures that are shared between threads.  In order to ensure that initialization happens in a thread-safe
manner, a multithreaded application program must call the Imf::staticInitialize() function before
accessing any other functions or classes in the IlmImf library.  In a single-threaded program initialization
happens automatically; it is not necessary to call Imf::staticInitialize().
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